DOI QR코드

DOI QR Code

Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment

  • Mahesh, Vinyas (Department of Aerospace Engineering,Indian Institute of Science) ;
  • Kattimani, Subhaschandra (Department of Mechanical Engineering, National Institute of Technology Karnataka) ;
  • Harursampath, Dineshkumar (Department of Aerospace Engineering,Indian Institute of Science) ;
  • Trung, Nguyen-Thoi (Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University)
  • Received : 2018.04.09
  • Accepted : 2019.04.30
  • Published : 2019.08.25

Abstract

The present article addresses the coupled free vibration problem of skew magneto-electro-elastic plates (SMEE) considering the temperature-moisture dependent material properties. The plate kinematics follows Reddy's higher order shear deformation theory. With the aid of finite element methods, the governing equations of motion are derived considering the Hamilton's principle and solved by adopting condensation technique. The influence of different temperature and moisture dependent empirical constants on the frequency response of SMEE plate has been assessed. In addition, the natural frequencies corresponding to various fields are evaluated and the effect of empirical constants on these coupled frequencies is determined. A detailed parametric study has been carried out to assess the individual effects of temperature and moisture dependent empirical constants along with their combined effect, aspect ratio, length-to-width ratio, stacking sequence and boundary conditions. The results reveal that the external environment as well as the geometrical skewness has a significant influence on the stiffness of the SMEE plates.

Keywords

References

  1. Adams, D.F. and Miller, A.K. (1977), "Hygrothermal microstresses in a unidirectional composite exhibiting inelastic material behaviour", Compos. Mater., 11, 285-299. https://doi.org/10.1177/002199837701100304.
  2. Akbarzadeh, A.H. and Chen, Z.T. (2012), "Magnetoelectroelastic behavior of rotating cylinders resting on an elastic foundation under hygrothermal loading", Smart Mater. Struct., 2, 125013. https://doi.org/10.1088/0964-1726/21/12/125013
  3. Akbarzadeh, A.H. and Chen, Z.T. (2013), "Hygrothermal stresses in one dimensional functionally graded piezoelectric media in constant magnetic field", Compos. Struct., 97, 317-331. https://doi.org/10.1016/j.compstruct.2012.09.058.
  4. Akbarzadeh, A.H. and Pasini, D. (2014), "Multiphysics of multilayered and functionally graded cylinders under prescribed hygrothermomagnetoelectromechanical loading", J. Appl. Mech.-T ASME, 81(4), 041018. doi: 10.1115/1.4025529.
  5. Akbarzadeh, A. and Chen, Z. (2014), "Thermo-magneto-electroelastic response of rotating hollow cylinders", Mech. Adv. Mater. Struct., 21(1), 67-80. https://doi.org/10.1080/15376494.2012.677108.
  6. Alaimo, A., Milazzo, A. and Orlando, C. (2013), "A four-node MITC finite element for magneto-electro-elastic multilayered plates", Comput.Struct., 129, 120-133. https://doi.org/10.1016/j.compstruc.2013.04.014.
  7. Annigeri, A.R, Ganesan, N. and Swarnamani, S. (2007), "Free vibration behavior of multiphase and layered magneto-electroelastic beam", J. Sound Vib., 299(1-2), 44-63. https://doi.org/10.1016/j.jsv.2006.06.044.
  8. Badri, T.M. and Al-Kayiem, H.H. (2013), "Analytical solution for simply supported and multilayered Magneto-Electro-Elastic Plates", Asian J. Sci. Res., 6, 236-244. https://doi.org/10.3923/ajsr.2013.236.244
  9. Benedetti, I. and Milazzo, A. (2017), Advanced models for smart multilayered plates based on Reissner Mixed Variational Theorem", Compos. Part B: Eng., 119, 215-229. https://doi.org/10.1016/j.compositesb.2017.03.007.
  10. Bhangale, R.K. and Ganesan, N. (2006), "Free vibration of simply supported functionally graded and layered magneto-electroelastic plates by finite element method", J. Sound Vib., 294(4-5), 1016-1038. https://doi.org/10.1016/j.jsv.2005.12.030.
  11. Chen, J.Y., Heyliger, P.R. and Pan, E. (2014), "Free vibration of three-dimensional multilayered magneto-electro-elastic plates under combined clamped/free boundary conditions", J. Sound Vib., 333(17), 4017-4029. https://doi.org/10.1016/j.jsv.2014.03.035.
  12. Chen, J., Chen, H., Pan, E. and Heyliger, P.R. (2007), "Modal analysis of magneto-electro-elastic plates using the state-vector approach", J. Sound Vib., 304(3-5), 722-734. https://doi.org/10.1016/j.jsv.2007.03.021.
  13. Daga, A., Ganesan, N. and Shankar, K. (2009), "Behavior of magneto-electro-elastic sensors under transient mechanical loading", Sensor. Actuat. A: Phys., 150(1), 46-55. https://doi.org/10.1016/j.sna.2008.11.035.
  14. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higherorder shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  15. Ebrahimi, F. and Barati, M.R. (2016), "Electromechanical buckling behavior of smart piezoelectrically actuated higherorder size-dependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556.
  16. Huang, D.J,, Ding, H.J. and Chen, W.Q. (2007), "Analytical solution for functionally graded magneto-electro-elastic plane beams", Int. J. Eng. Sci., 45(2-8) , 467-485. https://doi.org/10.1016/j.ijengsci.2007.03.005.
  17. Kondaiah, P., Shankar, K. and Ganesan, N. (2015), "Pyroeffects on magneto-electro-elastic sensor bonded on mild steel cylindrical shell", Smart Struct. Syst., 16(3), 537-554. https://doi.org/10.12989/sss.2015.16.3.537.
  18. Kondaiah, P. and Shankar, K. (2017), "Pyroeffects on Magneto-Electro-Elastic Sensor patch subjected to thermal load", Smart Struct. Syst., 19(3), 299-307. https://doi.org/10.12989/sss.2017.19.3.299.
  19. Kondaiah, P., Shankar, K. and Ganesan, N. (2012), "Studies on magneto-electro-elastic cantilever beam under thermal environment", Coupled Syst. Mech., 1(2), 205-217. https://doi.org/10.12989/csm.2012.1.2.205.
  20. Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Steadystate analysis of a three-layered electro-magneto-elastic strip in a thermal environment", Smart Mater. Struct., 16(2), 282-295. https://doi.org/10.1088/0964-1726/16/2/006
  21. Lage, R.G., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2004), "Layerwise partial mixed finite element analysis of magneto-electro-elastic plates", Comput. Struct., 82(17-19), 1293-1301. https://doi.org/10.1016/j.compstruc.2004.03.026.
  22. Milazzo, A. (2013), "A one-dimensional model for dynamic analysis of generally layered magneto-electro-elastic beams", J. Sound Vib., 332(2), 465-483. https://doi.org/10.1016/j.jsv.2012.09.004.
  23. Milazzo, A. (2014a), "Layer-wise and equivalent single layer models for smart multilayered plates", Compos. Part B: Eng., 67, 62-75. https://doi.org/10.1016/j.compositesb.2014.06.021.
  24. Milazzo, A. (2014b), "Refined equivalent single layer formulations and finite elements for smart laminates free vibrations", Compos. Part B: Eng., 61, 238-253. https://doi.org/10.1016/j.compositesb.2014.01.055.
  25. Moita, J.M.S., Soares, C.M.M. and Soares, C.A.M. (2009), "Analyses of magneto-electro-elastic plates using a higher order finite element model", Compos. Struct., 91(4), 421-426. https://doi.org/10.1016/j.compstruct.2009.04.007.
  26. Ootao, Y. and Tanigawa, Y. (2005), "Transient analysis of multilayered magneto-electro-thermoelastic strip due to nonuniform heat supply", Compos. Struct., 68(4), 471-480. https://doi.org/10.1016/j.compstruct.2004.04.013.
  27. Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech.- T. ASME, 68(4), 608-618. doi:10.1115/1.1380385.
  28. Pan, E. and Heyliger, P.R. (2002), "Free vibrations of simply supported and multilayered magneto-electro-elastic plates", J. Sound Vib., 252(3), 429-442. https://doi.org/10.1006/jsvi.2001.3693.
  29. Pan, E. and Han, F. (2005), "Exact solutions for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006.
  30. Pan, E. and Waksmanski, N. (2016), "Deformation of a layered magnetoelectroelastic simply-supported plate with nonlocal effect, an analytical three-dimensional solution", Smart Mater. Struct., 25(9), 095013. https://doi.org/10.1088/0964-1726/25/9/095013
  31. Ramirez, F., Heyliger, P.R. and Pan, E. (2006a), "Free vibration response of two-dimensional magneto-electro-elastic laminated plates", J. Sound Vib., 292(3-5), 626-644. https://doi.org/10.1016/j.jsv.2005.08.004.
  32. Ramirez, F., Heyliger, P.R. and Pan, E. (2006b), "Discrete layer solution to free vibrations of functionally graded magnetoelectro-elastic plates", Mech. Adv. Mater. Struct., 13(3), 249-266. https://doi.org/10.1080/15376490600582750.
  33. Razavi, S. and Shooshtari, A. (2015), "Nonlinear free vibration of magneto-electro-elastic rectangular plates", Compos. Struct., 119, 377-384. https://doi.org/10.1016/j.compstruct.2014.08.034.
  34. Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, CRC Press, Boca Raton, FL, USA.
  35. Saadatfar, M. and Khafri, A.M. (2014), "Hygrothermomagnetoelectroelastic analysis of a functionally graded magnetoelectroelastic hollow sphere resting on an elastic foundation", Smart Mater. Struct., 23(3), 035004. https://doi.org/10.1088/0964-1726/23/3/035004
  36. Saadatfar, M. and Khafri, A.M., (2015). "Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder", Smart Struct. Syst., 15(6), 1411-1437. https://doi.org/10.12989/sss.2015.15.6.1411.
  37. Shooshtari, A. and Razavi, S. (2016), "Large-amplitude free vibration of magneto-electro-elastic curved panels", Sci. Iran. 23(6), 2606-2615.
  38. Shooshtari, A. and Razavi, S. (2015a), "Large amplitude free vibration of symmetrically laminated magneto-electro-elastic rectangular plates on Pasternak type foundation", Mech. Res. Commun., 69, 103-113. https://doi.org/10.1016/j.mechrescom.2015.06.011.
  39. Sladek, J., Sladek, V., Krahulec, S. and Pan, E. (2013a), "The MLPG analyses of large deflections of magnetoelectroelastic plates", Eng. Anal. Bound. Elem., 37(4), 673-682. https://doi.org/10.1016/j.enganabound.2013.02.001.
  40. Sunar, M., Al-Garni, A.Z., Ali, M.H. and Kahraman, R. (2002), "Finite element modeling of thermopiezomagnetic smart structures", AIAA J., 40, 1845-1851. https://doi.org/10.2514/2.1862.
  41. Vinyas, M., Piyush, J.S. and Kattimani, S.C. (2017a), "Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate", J. Intel. Mat. Syst. Str., 29(7), 1430-1455. https://doi.org/10.1177/1045389X17740739.
  42. Vinyas, M. and Kattimani, S.C. (2017b), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040.
  43. Vinyas, M. and Kattimani, S.C. (2017c), "A Finite element based assessment of static behavior of multiphase magneto-electroelastic beams under different thermal loading", Struct. Eng. Mech., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519.
  44. Vinyas, M. and Kattimani, S.C. (2017d), "Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam", Struct. Eng. Mech., 63(4), 481-495. https://doi.org/10.12989/sem.2017.63.4.481.
  45. Vinyas, M. and Kattimani, S.C. (2017e), "Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment", Coupled Syst. Mech., 6(3), 351-368. https://doi.org/10.12989/csm.2017.6.3.351.
  46. Vinyas, M. and Kattimani, S.C. (2017f), "A 3D finite element static and free vibration analysis of magneto-electro-elastic beam", Coupled Syst. Mech., 6(4), 465-485. https://doi.org/10.12989/csm.2017.6.4.465.
  47. Vinyas, M. and Kattimani, S.C. (2017g), "Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: A finite element study", Compos. Struct., 178, 63-85. https://doi.org/10.1016/j.compstruct.2017.06.068.
  48. Vinyas, M. and Kattimani, S.C. (2017h), "Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis", Compos. Struct., 180, 617-637. https://doi.org/10.1016/j.compstruct.2017.08.015.
  49. Vinyas, M. and Kattimani, S.C. (2018a), "Investigation of the effect of BaTiO3/CoFe2O4 particle arrangement on the static response of magneto-electro-thermo-elastic plates", Compos. Struct., 185, 51-64. https://doi.org/10.1016/j.compstruct.2017.10.073.
  50. Vinyas, M. and Kattimani, S.C. (2018b), "Finite element evaluation of free vibration characteristics of magneto-electroelastic rectangular plates in hygrothermal environment using higher-order shear deformation theory", Compos. Struct., 202, 1339-1352. https://doi.org/10.1016/j.compstruct.2018.06.069.
  51. Vinyas, M, Kattimani, S.C., Loja, M.A.R. and Vishwas, M. (2018a), "Effect of BaTiO3/CoFe2O4micro-topological textures on the coupledstatic behaviour of magneto-electrothermo-elastic beams indifferent thermal environment", Mater. Res. Express, 5(12), 125702. https://doi.org/10.1088/2053-1591/aae0c8
  52. Vinyas, M., Kattimani, S.C. and Joladarashi, S. (2018b), "Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods", J. Ther. Stresses, 41(8), 1063-1079. https://doi.org/10.1080/01495739.2018.1447856.
  53. Vinyas, M., Nischith G., Loja, M.A.R., Ebrahimi, F. and Duc, N.D. (2019), "Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory", Compos. Struct., 214, 132-142. https://doi.org/10.1016/j.compstruct.2019.02.010.
  54. Vinyas, M. (2019a), "A higher order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods", Compos. Part B, 158, 286-301. https://doi.org/10.1016/j.compositesb.2018.09.086
  55. Vinyas, M. (2019b), "Vibration control of skew magneto-electroelastic plates using active constrained layer damping", Compos. Struct., 208, 600-617. https://doi.org/10.1016/j.compstruct.2018.10.046.
  56. Wang, R. and Pan, E. (2011), "Three-dimensional modeling of functionally graded multiferroic composites", Mech. Adv. Mater. Struct., 18(1), 68-76. https://doi.org/10.1080/15376494.2010.519227.
  57. Xin, L. and Hu, Z. (2015), "Free vibration of simply supported and multilayered magneto-electro-elastic plates", Compos. Struct., 121, 344-350. https://doi.org/10.1016/j.compstruct.2014.11.030.
  58. Youssef, H.M. (2005), "Generalized thermoelasticity of an infinite body with a cylindrical cavity and variable material properties", J. Therm. Stresses, 28(5), 521-532. https://doi.org/10.1080/01495730590925029.

Cited by

  1. Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory vol.73, pp.6, 2019, https://doi.org/10.12989/sem.2020.73.6.667