Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Annamdas, V.G.M., Bhalla, S. and Soh, C.K. (2016), "Applications of structural health monitoring technology in Asia", Struct. Health Monit., 16(3), 324-346. DOI:10.1177/1475921716653278.
- Asadollahi, P. and Li, J. (2017), "Statistical analysis of modal properties of a cable-stayed bridge through long-term wireless structural health monitoring", J. Bridge Eng., 22(9), 04017051. DOI:10.1061/(ASCE)BE.1943-5592.0001093.
- Bishop, C.M. (2006), Pattern recognition and machine learning. Singapore, Springer Science.
- Brownjohn, J., Magalhaes, F., Caetano, E. and Cunha, A. (2010), "Ambient vibration re-testing and operational modal analysis of the Humber Bridge", Eng. Struct., 32(8), 2003-2018. DOI:10.1016/j.engstruct.2010.02.034.
- Cabboi, A., Magalhaes, F., Gentile, C. and Cunha, A. (2017), "Automated modal identification and tracking: Application to an iron arch bridge", Struct. Control Health Monit., 24(1), e1854. DOI:10.1002/stc.1854.
- Cao, Z. and Wang, Y. (2014), "Bayesian model comparison and selection of spatial correlation functions for soil parameters", Struct. Saf., 49, 10-17. DOI:10.1016/j.strusafe.2013.06.003.
- Cardoso, R., Cury, A. and Barbosa, F. (2017), "A robust methodology for modal parameters estimation applied to SHM", Mech. Syst. Signal Pr., 95, 24-41. DOI:10.1016/j.ymssp.2017.03.021.
- Demarie, G.V. and Sabia, D. (2018), "A machine learning approach for the automatic long-term structural health monitoring", Struct. Health Monit., 147592171877919. DOI:10.1177/1475921718779193.
- El-Kafafy, M., Devriendt, C., Guillaume, P. and Helsen, J. (2017),. "Automatic tracking of the modal parameters of an offshore wind turbine drivetrain system", Energies, 10(4), 574. DOI:10.3390/en10040574.
- Feng, M.Q. and Bahng, E.Y. (1999), "Damage assessment of jacketed RC columns using vibration tests", J. Struct. Eng., 125(3), 265-271. DOI:10.1061/(ASCE)0733-9445(1999)125:3(265).
- Hartigan, J.A. and Wong, M.A. (1979), "Algorithm AS 136: A kmeans clustering algorithm", J. Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108. DOI:10.2307/2346830
- Hu, W.H. (2011), Operational modal analysis and continuous dynamic monitoring of footbridges. (Ph. D.), University of Porto, Porto.
- Huang, Y., Englehart, K.B., Hudgins, B. and Chan, A.D. (2005), "A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses", IEEE T. Bio-Med. Eng., 52(11), 1801-1811. DOI:10.1109/TBME.2005.856295.
- Jeffreys, H. (1998), The theory of probability. Oxford: Oxford University Press.
- Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R. and Wu, A.Y. (2002), "An efficient k-means clustering algorithm: Analysis and implementation", IEEE T. Pattern Anal. Machine Intell., (7), 881-892. DOI:10.1109/TPAMI.2002.1017616.
- Ko, J.M. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12), 1715-1725. DOI:10.1016/j.engstruct.2005.02.021.
- Mao, J.X., Wang, H., Feng, D.M., Tao, T.Y. and Zheng, W.Z. (2018a), "Investigation of dynamic properties of long-span cable-stayed bridges based on one-year monitoring data under normal operating condition", Struct. Control Health Monit., 25(5), e2146. DOI:10.1002/stc.2146.
- Mao, J.X., Wang, H., Fu, Y.G. and Spencer, Jr., B.F. (2019), "Automated modal identification using principal component and cluster analysis: Application to a long-span cable-stayed bridge", Struct. Control Health Monit., e2430. DOI:10.1002/stc.2430.
- Mao, J.X., Wang, H. and Li, J. (2018b). "Fatigue reliability assessment of a long-span cable-stayed bridge based on oneyear monitoring strain data", J. Bridge Eng., 24(1), 05018015. DOI:10.1061/(ASCE)BE.1943-5592.0001337.
- Moon, T.K. (1996), "The expectation-maximization algorithm", IEEE Signal Proc. Mag., 13(6), 47-60. DOI:10.1109/79.543975
- Ni, Y., Wang, Y. and Xia, Y. (2015), "Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses", Smart Struct. Syst., 15(2), 447-468. DOI:10.12989/sss.2015.15.2.447.
- Ou, J.P. and Li, H. (2010), "Structural health monitoring in mainland China: review and future trends", Struct. Health Monit., 9(3), 219-231. DOI:10.1177/1475921710365269.
- Peeters, B. and De Roeck, G. (2001), "Stochastic system identification for operational modal analysis: A review", J. Dynamic Systems, Measurement, and Control, 123(4), 659. DOI:10.1115/1.1410370.
- Reynders, E., Houbrechts, J. and De Roeck, G. (2012). "Fully automated (operational) modal analysis", Mech. Syst. Signal Pr., 29(2012), 228-250. DOI:10.1016/j.ymssp.2012.01.007.
- Reynders, E., Wursten, G. and De Roeck, G. (2014), "Output-only structural health monitoring in changing environmental conditions by means of nonlinear system identification", Struct. Health Monit., 13(1), 82-93. DOI:10.1177/1475921713502836.
- Reynolds, D.A., Quatieri, T.F. and Dunn, R.B. (2000), "Speaker verification using adapted Gaussian mixture models", Digital Signal Process., 10(1-3), 19-41. DOI:10.1006/dspr.1999.0361.
- Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. DOI:10.1016/j.engstruct.2018.05.084.
- Soyoz, S. and Feng, M.Q. (2009), "Long-term monitoring and identification of bridge structural parameters", Comput.-Aided Civil Infrastruct. Engi., 24(2), 82-92. DOI:10.1111/j.1467-8667.2008.00572.x.
- Spencer, Jr., B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
- Tamura, Y. and Suganuma, S.Y. (1996), "Evaluation of amplitudedependent damping and natural frequency of buildings during strong winds", J. Wind Eng. Ind. Aerod., 59(2-3), 115-130. DOI:10.1016/0167-6105(96)00003-7.
- Verboven, P., Parloo, E., Guillaume, P. and Van Overmeire, M. (2002), "Autonomous structural health monitoring-part I: modal parameter estimation and tracking", Mech. Syst. Signal Pr., 16(4), 637-657. DOI:10.1006/mssp.2002.1492.
- Wang, H., Mao, J.X. and Spencer, Jr., B.F. (2019), "A monitoringbased approach for evaluating dynamic responses of riding vehicle on long-span bridge under strong winds", Eng. Struct., 189, 35-47. DOI:10.1016/j.engstruct.2019.03.075.
- Wang, H., Tao, T., Gao, Y. and Xu, F. (2018), "Measurement of wind effects on a kilometer-level cable-stayed bridge during typhoon Haikui", J. Struct. Eng., 144(9), 04018142. DOI:10.1061/(ASCE)ST.1943-541X.0002138.
- Wang, H., Tao, T., Li, A. and Zhang, Y. (2016), "Structural health monitoring system for Sutong cable-stayed bridge", Smart Struct. Syst., 18(2), 317-334. DOI:10.12989/sss.2016.18.2.317.
- Wasserman, L. (2000), "Bayesian model selection and model averaging", J. Math. Psychol., 44(1), 92-107. DOI:10.1006/jmps.1999.1278.
- Wold, S., Esbensen, K. and Geladi, P. (1987), "Principal component analysis", Chemometrics and intelligent laboratory Systems, 2(1-3), 37-52. https://doi.org/10.1016/0169-7439(87)80084-9
- Zhou, G.D., Yi, T.H., Xie, M.X. and Li, H.N. (2017), "Wireless sensor placement for structural monitoring using informationfusing firefly algorithm", Smart Mater. Struct., 26(10), 104002. https://doi.org/10.1088/1361-665X/aa7930
- Zhou, G.D., Yi, T.H., Zhang, H. and Li, H.N. (2015), "Energyaware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm", Struct. Control Health Monit., 22(4), 648-666. DOI:10.1002/stc.1707.