DOI QR코드

DOI QR Code

Gaussian mixture model for automated tracking of modal parameters of long-span bridge

  • Mao, Jian-Xiao (Key Laboratory of C&PC Structures of Ministry of Education, Southeast University) ;
  • Wang, Hao (Key Laboratory of C&PC Structures of Ministry of Education, Southeast University) ;
  • Spencer, Billie F. Jr. (Nathan M. and Anne M. Newmark Endowed Chair of Civil Engineering, University of Illinois at Urbana-Champaign)
  • Received : 2018.12.06
  • Accepted : 2019.06.13
  • Published : 2019.08.25

Abstract

Determination of the most meaningful structural modes and gaining insight into how these modes evolve are important issues for long-term structural health monitoring of the long-span bridges. To address this issue, modal parameters identified throughout the life of the bridge need to be compared and linked with each other, which is the process of mode tracking. The modal frequencies for a long-span bridge are typically closely-spaced, sensitive to the environment (e.g., temperature, wind, traffic, etc.), which makes the automated tracking of modal parameters a difficult process, often requiring human intervention. Machine learning methods are well-suited for uncovering complex underlying relationships between processes and thus have the potential to realize accurate and automated modal tracking. In this study, Gaussian mixture model (GMM), a popular unsupervised machine learning method, is employed to automatically determine and update baseline modal properties from the identified unlabeled modal parameters. On this foundation, a new mode tracking method is proposed for automated mode tracking for long-span bridges. Firstly, a numerical example for a three-degree-of-freedom system is employed to validate the feasibility of using GMM to automatically determine the baseline modal properties. Subsequently, the field monitoring data of a long-span bridge are utilized to illustrate the practical usage of GMM for automated determination of the baseline list. Finally, the continuously monitoring bridge acceleration data during strong typhoon events are employed to validate the reliability of proposed method in tracking the changing modal parameters. Results show that the proposed method can automatically track the modal parameters in disastrous scenarios and provide valuable references for condition assessment of the bridge structure.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Annamdas, V.G.M., Bhalla, S. and Soh, C.K. (2016), "Applications of structural health monitoring technology in Asia", Struct. Health Monit., 16(3), 324-346. DOI:10.1177/1475921716653278.
  2. Asadollahi, P. and Li, J. (2017), "Statistical analysis of modal properties of a cable-stayed bridge through long-term wireless structural health monitoring", J. Bridge Eng., 22(9), 04017051. DOI:10.1061/(ASCE)BE.1943-5592.0001093.
  3. Bishop, C.M. (2006), Pattern recognition and machine learning. Singapore, Springer Science.
  4. Brownjohn, J., Magalhaes, F., Caetano, E. and Cunha, A. (2010), "Ambient vibration re-testing and operational modal analysis of the Humber Bridge", Eng. Struct., 32(8), 2003-2018. DOI:10.1016/j.engstruct.2010.02.034.
  5. Cabboi, A., Magalhaes, F., Gentile, C. and Cunha, A. (2017), "Automated modal identification and tracking: Application to an iron arch bridge", Struct. Control Health Monit., 24(1), e1854. DOI:10.1002/stc.1854.
  6. Cao, Z. and Wang, Y. (2014), "Bayesian model comparison and selection of spatial correlation functions for soil parameters", Struct. Saf., 49, 10-17. DOI:10.1016/j.strusafe.2013.06.003.
  7. Cardoso, R., Cury, A. and Barbosa, F. (2017), "A robust methodology for modal parameters estimation applied to SHM", Mech. Syst. Signal Pr., 95, 24-41. DOI:10.1016/j.ymssp.2017.03.021.
  8. Demarie, G.V. and Sabia, D. (2018), "A machine learning approach for the automatic long-term structural health monitoring", Struct. Health Monit., 147592171877919. DOI:10.1177/1475921718779193.
  9. El-Kafafy, M., Devriendt, C., Guillaume, P. and Helsen, J. (2017),. "Automatic tracking of the modal parameters of an offshore wind turbine drivetrain system", Energies, 10(4), 574. DOI:10.3390/en10040574.
  10. Feng, M.Q. and Bahng, E.Y. (1999), "Damage assessment of jacketed RC columns using vibration tests", J. Struct. Eng., 125(3), 265-271. DOI:10.1061/(ASCE)0733-9445(1999)125:3(265).
  11. Hartigan, J.A. and Wong, M.A. (1979), "Algorithm AS 136: A kmeans clustering algorithm", J. Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108. DOI:10.2307/2346830
  12. Hu, W.H. (2011), Operational modal analysis and continuous dynamic monitoring of footbridges. (Ph. D.), University of Porto, Porto.
  13. Huang, Y., Englehart, K.B., Hudgins, B. and Chan, A.D. (2005), "A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses", IEEE T. Bio-Med. Eng., 52(11), 1801-1811. DOI:10.1109/TBME.2005.856295.
  14. Jeffreys, H. (1998), The theory of probability. Oxford: Oxford University Press.
  15. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R. and Wu, A.Y. (2002), "An efficient k-means clustering algorithm: Analysis and implementation", IEEE T. Pattern Anal. Machine Intell., (7), 881-892. DOI:10.1109/TPAMI.2002.1017616.
  16. Ko, J.M. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12), 1715-1725. DOI:10.1016/j.engstruct.2005.02.021.
  17. Mao, J.X., Wang, H., Feng, D.M., Tao, T.Y. and Zheng, W.Z. (2018a), "Investigation of dynamic properties of long-span cable-stayed bridges based on one-year monitoring data under normal operating condition", Struct. Control Health Monit., 25(5), e2146. DOI:10.1002/stc.2146.
  18. Mao, J.X., Wang, H., Fu, Y.G. and Spencer, Jr., B.F. (2019), "Automated modal identification using principal component and cluster analysis: Application to a long-span cable-stayed bridge", Struct. Control Health Monit., e2430. DOI:10.1002/stc.2430.
  19. Mao, J.X., Wang, H. and Li, J. (2018b). "Fatigue reliability assessment of a long-span cable-stayed bridge based on oneyear monitoring strain data", J. Bridge Eng., 24(1), 05018015. DOI:10.1061/(ASCE)BE.1943-5592.0001337.
  20. Moon, T.K. (1996), "The expectation-maximization algorithm", IEEE Signal Proc. Mag., 13(6), 47-60. DOI:10.1109/79.543975
  21. Ni, Y., Wang, Y. and Xia, Y. (2015), "Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses", Smart Struct. Syst., 15(2), 447-468. DOI:10.12989/sss.2015.15.2.447.
  22. Ou, J.P. and Li, H. (2010), "Structural health monitoring in mainland China: review and future trends", Struct. Health Monit., 9(3), 219-231. DOI:10.1177/1475921710365269.
  23. Peeters, B. and De Roeck, G. (2001), "Stochastic system identification for operational modal analysis: A review", J. Dynamic Systems, Measurement, and Control, 123(4), 659. DOI:10.1115/1.1410370.
  24. Reynders, E., Houbrechts, J. and De Roeck, G. (2012). "Fully automated (operational) modal analysis", Mech. Syst. Signal Pr., 29(2012), 228-250. DOI:10.1016/j.ymssp.2012.01.007.
  25. Reynders, E., Wursten, G. and De Roeck, G. (2014), "Output-only structural health monitoring in changing environmental conditions by means of nonlinear system identification", Struct. Health Monit., 13(1), 82-93. DOI:10.1177/1475921713502836.
  26. Reynolds, D.A., Quatieri, T.F. and Dunn, R.B. (2000), "Speaker verification using adapted Gaussian mixture models", Digital Signal Process., 10(1-3), 19-41. DOI:10.1006/dspr.1999.0361.
  27. Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. DOI:10.1016/j.engstruct.2018.05.084.
  28. Soyoz, S. and Feng, M.Q. (2009), "Long-term monitoring and identification of bridge structural parameters", Comput.-Aided Civil Infrastruct. Engi., 24(2), 82-92. DOI:10.1111/j.1467-8667.2008.00572.x.
  29. Spencer, Jr., B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
  30. Tamura, Y. and Suganuma, S.Y. (1996), "Evaluation of amplitudedependent damping and natural frequency of buildings during strong winds", J. Wind Eng. Ind. Aerod., 59(2-3), 115-130. DOI:10.1016/0167-6105(96)00003-7.
  31. Verboven, P., Parloo, E., Guillaume, P. and Van Overmeire, M. (2002), "Autonomous structural health monitoring-part I: modal parameter estimation and tracking", Mech. Syst. Signal Pr., 16(4), 637-657. DOI:10.1006/mssp.2002.1492.
  32. Wang, H., Mao, J.X. and Spencer, Jr., B.F. (2019), "A monitoringbased approach for evaluating dynamic responses of riding vehicle on long-span bridge under strong winds", Eng. Struct., 189, 35-47. DOI:10.1016/j.engstruct.2019.03.075.
  33. Wang, H., Tao, T., Gao, Y. and Xu, F. (2018), "Measurement of wind effects on a kilometer-level cable-stayed bridge during typhoon Haikui", J. Struct. Eng., 144(9), 04018142. DOI:10.1061/(ASCE)ST.1943-541X.0002138.
  34. Wang, H., Tao, T., Li, A. and Zhang, Y. (2016), "Structural health monitoring system for Sutong cable-stayed bridge", Smart Struct. Syst., 18(2), 317-334. DOI:10.12989/sss.2016.18.2.317.
  35. Wasserman, L. (2000), "Bayesian model selection and model averaging", J. Math. Psychol., 44(1), 92-107. DOI:10.1006/jmps.1999.1278.
  36. Wold, S., Esbensen, K. and Geladi, P. (1987), "Principal component analysis", Chemometrics and intelligent laboratory Systems, 2(1-3), 37-52. https://doi.org/10.1016/0169-7439(87)80084-9
  37. Zhou, G.D., Yi, T.H., Xie, M.X. and Li, H.N. (2017), "Wireless sensor placement for structural monitoring using informationfusing firefly algorithm", Smart Mater. Struct., 26(10), 104002. https://doi.org/10.1088/1361-665X/aa7930
  38. Zhou, G.D., Yi, T.H., Zhang, H. and Li, H.N. (2015), "Energyaware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm", Struct. Control Health Monit., 22(4), 648-666. DOI:10.1002/stc.1707.