과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China
참고문헌
- Bernal, D. (2013), "Kalman filter damage detection in the presence of changing process and measurement noise", Mech. Syst. Signal Pr., 39(1-2), 361-371. DOI: 10.1016/j.ymssp.2013.02.012.
- Ching, J. and Beck, J.L. (2007), "Real-time reliability estimation for serviceability limit states in structures with uncertain dynamic excitation and incomplete output data", Probab. Eng. Mech., 22(1), 50-62. DOI: 10.1016/j.probengmech.2006.05.006.
- Eftekhar Azam, S., Ghisi, A. and Mariani, S. (2012a), "Parallelized sigma-point Kalman filtering for structural dynamics", Comput. Struct., 92-93, 193-205. DOI:10.1016/j.compstruc.2011.11.004.
- Eftekhar Azam, S., Bagherinia, M. and Mariani, S. (2012b), "Stochastic system identification via particle and sigma-point Kalman filtering", Scientia Iranica, 19(4), 982-991. DOI: 10.1016/j.scient.2012.06.007.
- Eftekhar Azam, S., Chatzi, E. and Papadimitriou, C. (2015a), "A dual Kalman filter approach for state estimation via output-only acceleration measurements", Mech. Syst. Signal Pr., 60-61, 866-886. DOI:10.1016/j.ymssp.2015.02.001.
- Eftekhar Azam, S., Chatzi, E., Papadimitriou, C. and Smyth, A. (2015b), "Experimental validation of the Kalman-type filters for online and real-time state and input estimation", J. Vib. Sound, DOI: 10.1177/1077546315617672.
- Eftekhar Azam, S., Mariani, S. and Attari, N.K.A. (2017), "Online damage detection via a synergy of proper orthogonal decomposition and recursive Bayesian filters", Nonlinear Dynam., 89(2), 1489-1511. DOI: 10.1007/s11071-017-3530-1.
- Gao, F. and Lu, Y. (2006), "A Kalman-filter based time-domain analysis for structural damage diagnosis with noisy signals," J. Sound Vib., 297(3-5), 916-930. DOI: 10.1016/j.jsv.2006.05.007.
- Gillijns, S. and De Moor, B. (2007a), "Unbiased minimumvariance input and state estimation for linear discrete-time systems", Automatica, 43, 111-116. DOI: 10.1016/j.automatica.2006.08.002.
- Gillijns, S. and De Moor, B. (2007b), "Unbiased minimumvariance input and state estimation for linear discrete-time systems with direct feedthrough", Automatica, 43, 934-937. DOI: 10.1016/j.automatica.2006.11.016.
- He, J., Xu, Y.L., Zhang, C.D. and Zhang, X.H. (2015), "Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors", Smart Struct. Syst., 16(6), 981-1002. DOI: 10.12989/sss.2015.16.6.981.
- Hernandez, E.M. (2011), "A natural observer for optimal state estimation in second order linear structural systems", Mech. Syst. Signal Pr., 25(8), 2938-2947. DOI:10.1016/j.ymssp.2011.06.003.
- Hernandez, E.M., Bernal, B. and Caracoglia, L. (2013), "On-line monitoring of wind-induced stresses and fatigue damage in instrumented structures", Struct. Control. Health Monit., 20(10), 1291-1302. DOI: 10.1002/stc.1536.
- Hsieh, C.S. (2009), "Extension of unbiased minimum-variance input and state estimation for systems with unknown inputs", Automatica, 45(9), 2149-2153. DOI: 10.1016/j.automatica.2009.05.004.
- Hu, R.P., Xu, Y.L., Lu, X., Zhang, C.D., Zhang, Q.L. and Ding, J.M. (2017), "Integrated multi-type sensor placement and response reconstruction method for high-rise buildings under unknown seismic loading", Struct. Des. Tall Spec. Build., 27(6), e1453, DOI: 10.1002/tal.1453.
- Kim, D.W. and Park, C.S. (2017), "Application of Kalman filter for estimating a process disturbance in a building space", Sustainability, 9, 1868. DOI: 10.3390/su9101868.
- Lei, Y., Luo, S. and Su, Y. (2016), "Data fusion based improved Kalman filter with unknown inputs and without collocated acceleration measurements", Smart Struct. Syst., 18(3), 375-387. DOI: 10.12989/sss.2016.18.3.375.
- Liu, L., Zhu, J., Su, Y. and Lei, Y. (2016), "Improved Kalman filter with unknown inputs based on data fusion of partial acceleration and displacement measurements", Smart Struct. Syst., 17(6), 903-915. DOI: 10.12989/sss.2016.17.6.903.
- Lourens, E., Papadimitriou, C., Gillijns, S., Reynders, E., De Roeck, G. and Lombaert, G. (2012a), "Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors," Mech. Syst. Signal Pr., 29, 310-327. DOI: 10.1016/j.ymssp.2012.01.011.
- Lourens, E., Reynders, E., DeRoeck, G., Degrande, G. and Lombaert, G. (2012b), "An augmented Kalman filter for force identification in structural dynamics", Mech. Syst. Signal Pr., 27, 446-460. DOI: 10.1016/j.ymssp.2011.09.025.
- Naets, F., Cuadrado, J. and Desmet, W. (2015), "Stable force identification in structural dynamics using Kalman filtering and dummy-measurements", Mech. Syst. Signal Pr., 50-51, 235-248. DOI: 10.1016/j.ymssp.2014.05.042.
- Pan, S.W., Su, H.Y., Wang, H. and Chu, J. (2011), "The study of joint input and state estimation with Kalman filtering", Trans. Inst. Meas. Control, 33(8), 901-918. DOI: 10.1177/0142331210361551.
- Papadimitriou, C., Fritzen, C., Kraemer, P. and Ntotsios, E. (2011), "Fatigue predictions in entire body of metallic structures from a limited number of vibration sensors using Kalman filtering", Struct. Control. Health Monit., 18, 554-573. DOI: 10.1002/stc.395.
- Ren, P. and Zhou, Z. (2017), "Strain estimation of truss structures based on augmented Kalman filtering and modal expansion", Adv. Mech. Eng., 9(11), 1-10. DOI: 10.1177/1687814017735788
- Smyth, A. and Wu, M. (2007), "Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring", Mech. Syst. Signal Pr., 21(2), 706-723. DOI: 10.1016/j.ymssp.2006.03.005.
- Vicario, F., Phan, M.Q., Betti, R. and Longman, R.W. (2015), "Output-only observer/Kalman filter identification (O3KID)", Struct. Control. Health Monit., 22(5), 847-872. DOI: 10.1002/stc.1719.
- Welch, G. and Bishop, G. (1995), "An Introduction to the Kalman Filter", Technical Report, University of North Carolina at Chapel Hill Chapel Hill, NC, USA, DOI: 10.1145/800233.807054.
- Wu, A.L., Loh, C.H., Yang, J.N., Weng, J.H., Chen, C.H. and Ueng, T.S. (2009), "Input force identification: Application to soil-pile interaction", Struct. Control Vib.. Control, 16, 223-240, DOI: 10.1002/stc.308.
- Zhang, C.D. and Xu, Y.L. (2017), "Structural damage identification via response reconstruction under unknown excitation", Struct. Control. Health Monit., 24(8), e1953, DOI: 10.1002/stc.1953.
- Zhi, L.H., Li, Q.S. and Fang, M.X. (2016), "Identification of wind loads and estimation of structural responses of super-tall buildings by an inverse method", Comput.-Aided Civil Infrastruct. Eng., 31, 966-982. DOI: 10.1111/mice.12241.
- Zhi, L.H., Fang, M.X. and Li, Q.S. (2017), "Estimation of wind loads on a tall building by an inverse method", Struct. Control. Health Monit., 24, e1908, DOI: 10.1002/stc.198
- Zhu, S., Zhang, X.H., Xu, Y.L. and Zhan, S. (2013), "Multi-type sensor placement for multi-scale response reconstruction", Adv. Struct. Eng., 16(10), 1779-1797. DOI: 10.1260/1369-4332.16.10.1779.
피인용 문헌
- A two-stage Kalman filter for the identification of structural parameters with unknown loads vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.693