과제정보
연구 과제 주관 기관 : National Research Foundation of Korea (NRF)
참고문헌
- Abou-Elfath, H. (2017), "Evaluating the ductility characteristics of self-centering buckling-restrained shape memory alloy braces", Smart Mater. Struct., 26(5), 055020. https://doi.org/10.1088/1361-665X/aa6abc
- Aguirre, D.A. and Montejo, L.A. (2014), "Damping and frequency changes induced by increasing levels of inelastic seismic demand", Smart Struct. Syst., 14(3), 445-468. http://dx.doi.org/10.12989/sss.2014.14.3.445.
- Baghani, M., Naghdabadi, R., Arghavani, J. and Sohrabpour, S. (2012), "A thermodynamically-consistent 3D constitutive model for shape memory polymers", Int. J. Plasticity, 35, 13-30. https://doi.org/10.1016/j.ijplas.2012.01.007.
- Choi, E., Chae, S.W., Park, H., Nam, T.H., Mohammadzadeh, B. and Hwang, J.H. (2018), "Investigating self-centering capacity of superelastic shape memory alloy fibers with different anchorages through pullout tests", J. Nanosci. Nanotechno., 18, 6228-6232. https://doi.org/10.1166/jnn.2018.15635.
- Choi, E., Cho, B.S. and Lee, S. (2015), "Seismic retrofit of circular RC columns through using tensioned GFRP wires winding", Compos. Part B: Eng., 83, 216-225. https://doi.org/10.1016/j.compositesb.2015.08.041.
- Choi, E., Kim, D.J., Chung, Y.S., Kim, H.S., and Jung, C. (2015), "Crack-closing of cement mortar beams using NiTi cold-drawn SMA short fibers", Smart Mater. Struct., 24(1), 015018. https://doi.org/10.1088/0964-1726/24/1/015018
- Choi, E., Kim, D.J., Hwang, J.H. and Kim, W.J. (2016), "Prestressing effect of cold-drawn short NiTi SMA fibers in steel reinforced mortar beams", Smart Mater. Struct., 25(8), 085041. https://doi.org/10.1088/0964-1726/25/8/085041
- Choi, E., Kim, D.J., Jeon, C. and Gin, S. (2016), "New SMA short fibers for cement composites manufactured by cold drawing", J. Mater. Sci. Res., 5(2), 74-87. https://doi.org/10.5539/jmsr.v5n2p74
- Choi, E., Kim, D.J., Lee, J.H. and Ryu, G.S. (2017), "Monotonic and hysteretic pullout behavior of superelastic SMA fibers with different anchorages", Compos. Part B: Eng., 108, 232-242. https://doi.org/10.1016/j.compositesb.2016.09.080.
- Choi, E., Kim, D.J., Youn, H. and Nam, T.H. (2015), "Repairing cracks developed in mortar beams reinforce by cold-drawn NiTi or NiTiNb SMA fibers", Smart Mater. Struct., 24(12), 125010. https://doi.org/10.1088/0964-1726/24/12/125010
- Choi, E., Mohammadzadeh, B., Hwang, J.H. and Kim, W.J. (2018), "Pullout behavior of superelastic SMA fibers with various endshapes embedded in cement mortar", Constr. Build. Mater., 167, 605-616. https://doi.org/10.1016/j.conbuildmat.2018.02.070.
- Choi, E., Mohammadzadeh, B., Kim, D. and Jeon, J.S. (2018), "A new experimental investigation into the effects of reinforcing mortar beams with superelastic SMA fibers on controlling and closing cracks", Compos. Part B: Eng., 137, 140-152. https://doi.org/10.1016/j.compositesb.2017.11.017.
- Dyshlyuk, A.V., Makarova, N.V., Vitrik, O.B., Kulchin, Y.N. and Babin, S.A. (2017), "Strain monitoring of reinforced concrete with OTDR-based FBG interrogation technique", Smart Struct. Syst., 20(3), 343-350. https://doi.org/10.12989/sss.2017.20.3.343.
- Farmani, M.A. and Ghassemieh, M. (2016), "Shape memory alloy-based moment connections with superior self-centering properties", Smart Mater. Struct., 25(7), 075028. https://doi.org/10.1088/0964-1726/25/7/075028
- Feng, X.Q. and Sun, Q. (2007), "Shakedown analysis of shape memory alloy structures", Int. J. Plasticity, 23(2), 183-206. https://doi.org/10.1016/j.ijplas.2006.04.001.
- Gribniak, V., Rimkus, A., Torres, L. and Hui, D. (2018), "An experimental study on cracking and deformations of tensile concrete elements reinforced with multiple GFRP bars", Compos. Struct., 201, 477-485. https://doi.org/10.1016/j.compstruct.2018.06.059.
- Hadi, A. and Akbari, H. (2016), "Modeling and control of a flexible continuum module actuated by embedded shape memory alloys", Smart Struct. Syst., 18(4), 663-682. http://dx.doi.org/10.12989/sss.2016.18.4.663.
- Horney, L., Chlup, V.H., Janouchova, K. and Vysanska, M. (2012), "Single fiber pull-out test of nitinol-silicon-textile composite", Bull. Appl. Mech., 8(32), 77-80.
- Jang, K. and An, Y.K. (2018), "Multiple crack evaluation on concrete using a line laser thermography scanning", Smart Struct. Syst., 22(2), 201-207. https://doi.org/10.12989/sss.2018.22.2.201.
- Jiang, Z., Li, W. and Yuan, Z. (2015), "Influence of mineral additives and environmental conditions on the self-healing capabilities of cementitious materials", Cement Concrete Compos., 57, 116-127. https://doi.org/10.1016/j.cemconcomp.2014.11.014.
- Kabir, M.R., Alam, M.S., Said, A.M. and Ayad, A. (2016), "Performance of hybrid reinforced concrete beam column joint: A critical review", Fibers, 4(13), 1-12, doi:10.3390/fib4020013.
- Kang, M.S., An, Y.K. and Kim, D.J. (2018), "Electrical impedance-based crack detection of SFRC under varying environmental conditions", Smart Struct. Syst., 22(1), 1-11. https://doi.org/10.12989/sss.2018.22.1.001.
- Kim, B. and Cho, S. (2018), "Efflorescence assessment using hyperspectral imaging for concrete structure", Smart Struct. Syst., 22(2), 209-221. https://doi.org/10.12989/sss.2018.22.2.209.
- Kim, D.J., Kim, H.A., Chung, Y.S. and Choi, E. (2014), "Pullout resistance of straight NiTi shape memory alloy fibers in cement mortar after cold drawing and heat treatment", Compos. Part B, 67, 588-594. https://doi.org/10.1016/j.compositesb.2014.08.018.
- Kim, H.Y., Ikehara, Y., Kim, J.I., Hosoda, H. and Miyazaki, S. (2006), "Martnesitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys", Acta Materialia, 54(9), 2419-2429. https://doi.org/10.1016/j.actamat.2006.01.019.
- Kim, W.J., Lee, J.M., Kim, J.S. and Lee, C.J. (2012), "Measuring high speed crack propagation in concrete fracture test using mechanoluminescent material", Smart Struct. Syst., 10(6), 547-555. http://dx.doi.org/10.12989/sss.2012.10.6.547.
- Li, X., Li, M., and Song, G. (2015), "Energy-dissipating and selfrepairing SMA-ECC composite material system", Smart Mater. Struct., 24(2), 025024. https://doi.org/10.1088/0964-1726/24/2/025024
- Liu, J.L., Huang, H.Y. and Xie, J.X. (2015), "Superelastic anisotropy characteristics of columnar-grained Cu-Al_Mn shape memory alloys and its potential applications", Mater. Design, 85, 211-220. https://doi.org/10.1016/j.matdes.2015.06.114.
- Mehrabi, R. and Karamooz Ravari, M.R. (2015), "Simulation of superelastic SMA helical springs", Smart Struct. Syst., 16(1), 183-194. http://dx.doi.org/10.12989/sss.2015.16.1.183.
- Mohammadzadeh, B. and Noh, H.C. (2014), "Use of buckling coefficients in predicting buckling load of plates with and without holes", J. Korean Soc. Adv. Copm. Struct., 5(3), 1-7. http://dx.doi.org/10.11004/kosacs.2014.5.3.001.
- Mohammadzadeh, B. and Noh, H.C. (2015), "Numerical analysis of dynamic responses of the plate subjected to impulsive loads", Int. J. Civil, Environ. Struct. Constr. Architect. Eng., 9(9), 1148-1151.
- Mohammadzadeh, B. and Noh, H.C. (2016), "Investigation into buckling coefficients of plates with holes considering variation of hole size and plate thickness", Mechanika, 22(3), 167-175. https://doi.org/10.5755/j01.mech.22.3.12767.
- Mohammadzadeh, B. and Noh, H.C. (2017), "Analytical method to investigate nonlinear dynamic responses of sandwich plates with FGM faces resting on elastic foundation considering blast loads", Compos. Struct., 174, 142-157. https://doi.org/10.1016/j.compstruct.2017.03.087.
- Mohammadzadeh, B. and Noh, H.C. (2019), "An analytical and numerical investigation on the dynamic responses of steel plates considering the blast loads", Int. J. Steel Struct., 19(2),603-617. https://doi.org/10.1007/s13296-018-0150-7
- Mohammadzadeh, B., Bina, M. and Hasounizadeh, H. (2012), "Application and comparison of mathematical and physical models on inspecting slab of stilling basin floor under static and dynamic forces", Appl. Mech. Mater., 147, 283-287. https://doi.org/10.4028/www.scientific.net/AMM.147.283.
- Oudah, F. and El-Hacha, R. (2017), "Joint performance in concrete beam-column connections reinforced using SMAsmart material", Eng. Struct., 151, 745-760. https://doi.org/10.1016/j.engstruct.2017.08.054.
- Pereiro-Barcelo, J. and Bonet, J. (2017), "Ni-Ti SMA bars behaviour under compression", Constr. Build. Mater., 155, 348-362. https://doi.org/10.1016/j.conbuildmat.2017.08.083.
- Qiu, C., Zhang, Y., Qi, J. and Li, H. (2018), "Seismic behavior of properly designed CBFs equipped with NiTi SMA braces", Smart Struct. Syst., 21(4), 479-491. https://doi.org/10.12989/sss.2018.21.4.479.
- Schrooten, J., Michaud, V., Parthenios, J., Psarras, G.C., Galiotis, C., Gotthardt, R., Manson, J.A. and Humbeeck, J.V. (2002), "Progress on composites with embedded shape memory alloy wires", Materials Transactions, Special Issue on Smart Materials Fundamentals and Applications, 43(5), 961-973.
- Shahverdi, M., Czaderski, C. and Motavalli, M. (2016), "Ironbased shape memory alloys for prestressed near- surface mounted strengthening of reinforced concrete beams", Constr. Build. Mater., 112, 28-38. https://doi.org/10.1016/j.conbuildmat.2016.02.174.
- Shokri, T. and Nanni, A. (2014), "Crack source location by acoustic emission monitoring method in RC strips during in-situ load test", Smart Struct. Syst., 13(1), 155-171. http://dx.doi.org/10.12989/sss.2014.13.1.155.
- Truong, B.T., Bui, T.T., Limam, A., Larabi, A.S., Nguyen, K.L. and Michel, M. (2017), Experimental investigations of reinforced concrete beams repaired/reinforcd by TRC composites", Compos. Struct., 168, 826-839. https://doi.org/10.1016/j.compstruct.2017.02.080.
- Wang, J., Sehitoglu, H. and Maier, H.J. (2014), "Dislocation slip stress prediction in shape memory alloys", Int. J. Plasticity, 54, 247-266. https://doi.org/10.1016/j.ijplas.2013.08.017.
- Yang, M., Feng, L., Gu, H., Su, H., Cui, X. and Cao, W. (2017), "Crack detection study for hydraulic concrete using PPPBOTDA", Smart Struct. Syst., 20(1), 75-83. https://doi.org/10.12989/sss.2017.20.1.075.
피인용 문헌
- Seismic analysis of high-rise steel frame building considering irregularities in plan and elevation vol.39, pp.1, 2019, https://doi.org/10.12989/scs.2021.39.1.065