Fig. 1. (a) Schematic diagram of the process sequence used to grow ZnO thin films. (b) Thicknesses of ZnO thin films deposited on silicon (100) substrates vs number of ALD growth cycles applied to grow the films.
Fig. 3. Top-view FE-SEM images of ZnO thin films grown at 150℃ on glass substrates, using various numbers of ZnO ALD cycles: (a) 10, (b) 20, (c) 30, (d) 50, (e) 100, and (f) 200 cycles. All scale bars represent 200 nm.
Fig. 4. AFM images of the ZnO thin films grown at 150℃ on silicon (100) substrates, using various numbers of ZnO ALD cycles: (a) 10, (b) 20, (c) 30, (d) 50, (e) 100, and (f) 200 cycles.
Fig. 5. The resistivity values of ZnO films deposited by ALD at 150℃ as a function of number of cycles.
Fig. 2. Thin-film XRD patterns of ZnO films grown on glass substrates for various numbers of ALD growth cycles.
Fig. 6. (a) The optical transmittances of ZnO films with various number of ALD cycles. (b) The optical band gap of the ZnO films with various number of ALD cycles.
참고문헌
- T. Minami, "Transparent Conducting Oxide Semiconductors for Transparent Electrodes", Semicond. Sci. Technol., 20(4), S35 (2005). https://doi.org/10.1088/0268-1242/20/4/004
- T. Minami, H. Nanto, and S. Takata, "Highly Conductive and Transparent Aluminum Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering", Jpn. J. Appl. Phys., 23(5A), L280 (1984). https://doi.org/10.1143/JJAP.23.L280
- V. V. Simakov, O. V. Yakusheva, A. I. Grebennikov, and V. V. Kisin, "Current-Voltage Characteristics of Thin-Film Gas Sensor Structures based on Tin Dioxide", Tech. Phys. Lett., 31(4), 339 (2005). https://doi.org/10.1134/1.1920390
- Y.-J. Choi, K.-M. Kang, and H.-H. Park, "Anion-Controlled Passivation Effect of the Atomic Layer Deposited ZnO Films by F Substitution to O-related Defects on the Electronic Band Structure for Transparent Contact Layer of Solar Cell Applications", Solar Energy Materials and Solar Cells, 132, 403 (2015). https://doi.org/10.1016/j.solmat.2014.09.029
- R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, "Tin Doped Indium Oxide Thin Films: Electrical Properties", J. Appl. Phys., 83(5), 2631 (1998). https://doi.org/10.1063/1.367025
- J. H. Yoo, and H. J. Chang, "Preparation of Polymer Light Emitting Diodes with PFO-Poss Organic Emission Layer on ITO/Glass Substrates", J. Microelectron. Packag. Soc., 13(4), 51 (2006).
- J. Y. Kim, Y.-J. Choi, and H.-H. Park, "Surface Oxidation Effect During High Temperature Vacuum Annealing on the Electrical Conductivity of ZnO thin Films Deposited by ALD", J. Microelectron. Packag. Soc., 19(2), 73 (2012). https://doi.org/10.6117/kmeps.2012.19.2.073
- J.-H. Lee, K.-H. Ko, and B.-O. Park, "Electrical and Optical Properties of ZnO Transparent Conducting Films by the Sol-Gel Method", Thin Solid Films, 247(1-2), 119 (2003).
- P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, "Transparent ZnO Thin-Film Transistor Fabricated by RF Magnetron Sputtering", Jr., Appl. Phys. Lett., 82(7), 1117 (2003). https://doi.org/10.1063/1.1553997
- Y.-J. Choi, H.-H. Park, H. Kim, H.-H. Park, H. J. Chang, and H. Jeon, "Fabrication and Characterization of Direct-Patternable ZnO Films Containing Pt Nanoparticles", Jpn. J. Appl. Phys., 48, 035504 (2009). https://doi.org/10.1143/JJAP.48.035504
- X. W. Sun, and H. S. Kwok, "Optical Properties of Epitaxially Grown Zinc Oxide Films on Sapphire by Pulsed Laser Deposition", J. Appl. Phys., 86, 408 (1999). https://doi.org/10.1063/1.370744
- H. Z. Wu, K. M. He, D. J. Qiu, and D. M. Huang, "Low-Temperature Epitaxy of ZnO Films on (001) and Silica by Reactive E-Beam Evaporation", J. Cryst. Growth., 217(1-2), 131 (2000). https://doi.org/10.1016/S0022-0248(00)00397-3
- M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, "Optical and Structural Investigation of ZnO Thin Films Prepared by Chemical Vapor Deposition (CVD)", Thin Solid Films, 403, 485 (2002). https://doi.org/10.1016/S0040-6090(01)01544-9
- Y.-J. Choi, and H.-H. Park, "A Simple Approach to The Fabrication of Fluorine-Doped Zinc Oxide Thin Films by Atomic Layer Deposition at Low Temperatures and an Investigation into The Growth Mode", J. Mater. Chem. C., 2(1), 98 (2014). https://doi.org/10.1039/C3TC31478B
- K.-M. Kang, and H.-H. Park. "Effect of Atomic Layer Deposition Temperature on the Growth Orientation, Morphology, and Electrical, Optical, and Band-Structural Properties of ZnO and Fluorine-Doped ZnO Thin Films", The Journal of Physical Chemistry C, 122(1), 377 (2017). https://doi.org/10.1021/acs.jpcc.7b08943
- J.-S. Na, Q. Peng, G. Scarel, and G. N. Parson, "Role of Gas Doping Sequence in Surface Reactions and Dopant Incorporation during Atomic Layer Deposition of Al-doped ZnO", Chem. Mater., 21(23), 5585 (2009). https://doi.org/10.1021/cm901404p
- J. W. Elam, and S. M. George, "Growth of ZnO/Al2O3 Alloy Films using Atomic Layer Deposition Techniques", Chem. Mater., 15(4), 1020 (2003). https://doi.org/10.1021/cm020607+
- A. W. Ott, and R. P. H. Chang, "Atomic Layer-Controlled Growth of Transparent Conducting ZnO on Plastic Substrates", Mater. Chem. Phys., 58(2), 132 (1999). https://doi.org/10.1016/S0254-0584(98)00264-8
-
S. K. Kim, C. S. Hwang, S. H. Ko Park, and S. J. Yun, "Comparison between ZnO Films Grown by Atomic Layer Deposition using
$H_2O$ or$O_3$ as Oxidant", Thin Solid Films, 478(1-2), 103 (2005). https://doi.org/10.1016/j.tsf.2004.10.015 - S. H. Ko Park, and Y. E. Lee, "Controlling Preferred Orientation of ZnO Thin Films by Atomic Layer Deposition", J. Mater. Sci., 39(6), 2195 (2004). https://doi.org/10.1023/B:JMSC.0000017786.81842.ae
- H. Makino, S. Kishimoto, T. Yamada, A. Miyake, N. Yamamoto, and T. Yamamoto, "Effects of Surface Pretreatment on Growth of ZnO on Glass Substrate", Physica Status Solidi (a), 205(8), 1971 (2008). https://doi.org/10.1002/pssa.200778912
- M. Ohring, "The Materials Science of Thin Films", 2, Academic Press, New York, (2001).
- M. Marinov, and D. Dobrev, "The Change in the Structure of Vacuum-Condensed Hexagonal Close-Packed Metal Films on Ion Bombardment", Thin Solid Films, 42(3), 265 (1977). https://doi.org/10.1016/0040-6090(77)90361-3
- M. D. McCluskey, and S. J. Jokela, "Defects in ZnO", J. Appl. Phys., 106(7), 071101 (2009). https://doi.org/10.1063/1.3216464
- J. Wu, J. Cao, W.-Q. Han, A. Janotti, and H.-C. Kim, "Functional Metal Oxide Nano-Structures", 149, Springer, New York, (2012).
- C. G. Van de Walle, and J. Neugebauer, "Universal Alignment of Hydrogen Levels in Semiconductors, Insulators and Solutions", Nature, 423, 626 (2003). https://doi.org/10.1038/nature01665
- M. D. McCluskey, and S. J. Jokela, "Sources of n-Type Conductivity in ZnO", Phys. B., 355, 401 (2007). https://doi.org/10.1016/j.physb.2004.11.068
- H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, "Semiconducting Transparent Thin Films", Institute of Physics Publishing, Philadelphia (1995).
- S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, "Blueshift of Optical Band Gap in ZnO Thin Films Grown by Metal-Organic Chemical-Vapor Deposition", J. Appl. Phys., 98(1), 013505 (2005). https://doi.org/10.1063/1.1940137
- Y. Kayanuma, "Quantum-Size Effects of Interacting Electrons and Holes in Semi-Conductor Microcrystals with Spherical Shape", Phys. Rev. B: Condens. Matter., 38(14), 9797 (1988). https://doi.org/10.1103/PhysRevB.38.9797
- L. E. Brus, "Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: the Size Dependence of the Lowest Excited Electronic State", J. Chem. Phys., 80(9), 4403 (1984). https://doi.org/10.1063/1.447218