DOI QR코드

DOI QR Code

ZnO 초박막의 두께 변화에 따른 구조적, 전기적, 광학적 특성 변화 연구

The Structural, Electrical, and Optical Properties of ZnO Ultra-thin Films Dependent on Film Thickness

  • 강경문 (연세대학교 신소재공학과) ;
  • ;
  • 김민재 (연세대학교 신소재공학과) ;
  • 이홍섭 (강원대학교 재료공학과) ;
  • 박형호 (연세대학교 신소재공학과)
  • Kang, Kyung-Mun (Department of Materials Science and Engineering, Yonsei University) ;
  • Wang, Yue (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Minjae (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Hong-Sub (Department of Materials Science and Engineering, Kangwon National University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • 투고 : 2019.06.10
  • 심사 : 2019.06.28
  • 발행 : 2019.06.30

초록

원자층 증착법(ALD: atomic layer deposition)으로 $150^{\circ}C$에서 성장된 zinc oxide (ZnO) 초박막의 두께 변화에 따른 구조적, 전기적, 광학적 특성을 조사하였다. ZnO 박막을 증착하기 위해 금속 전구체와 반응물로 각각 diethylzinc와 deionized water를 사용하였다. ALD 사이클 당 성장률은 $150^{\circ}C$에서 약 0.21 nm/cycle로 일정 하였으며, 50 사이클 이하의 샘플들은 초기 ALD 성장 단계에서 상대적으로 얇은 두께로 인하여 비정질 성질을 갖는 것으로 보였다. 100 사이클에서 200 사이클로 두께가 증가함에 따라 ZnO 박막의 결정성이 증가하였고 hexagonal wurtzite 구조를 보였다. 또한, ZnO 박막의 입자 크기가 ALD 사이클의 수의 증가에 따라 증가되었다. 전기적 특성 분석 결과 박막 두께의 증가에 따라서 비저항 값이 감소하였으며, 이는 박막 두께 증가에 따른 입자 크기 증가 및 결정성 개선으로 더 두꺼운 ZnO 박막에서 입자 경계의 농도 감소와 상관 관계가 있음을 알 수 있었다. 광학적 특성 분석 결과 근 자외선 영역 (300 nm~400 nm)에서의 밴드 엣지 흡수가 증가 및 이동되었는데 이 현상은 ZnO 박막 두께의 증가에 따른 캐리어 농도의 증가가 기인 한 것으로, 이 결과는 박막 두께의 증가에 따른 저항률 감소와 잘 일치한다. 결과적으로 박막의 두께가 증가하면 막 면의 응력이 완화되어 밴드 갭이 감소하고 결정성 및 전도성이 향상됨을 알 수 있었다.

We investigated the structural, electrical and optical properties of zinc oxide (ZnO) ultra-thin films grown at $150^{\circ}C$ by atomic layer deposition (ALD). Diethylzinc and deionized water were used as metal precursors and reactants, respectively, for the deposition of ZnO thin films. The growth rate per ALD cycle was a constant 0.21 nm/cycle at $150^{\circ}C$, and samples below 50 cycles had amorphous properties due to the relatively thin thickness at the initial ALD growth stage. With the increase of the thickness from 100 cycles to 200 cycles, the crystallinity of ZnO thin films was increased and hexagonal wurtzite structure was observed. In addition, the particle size of the ZnO thin film increased with increasing number of ALD cycles. Electrical properties analysis showed that the resistivity value decreased with the increase of the thin film thickness, which is correlated with the decrease of the grain boundary concentration in the thicker ZnO thin film due to the increase of grain size and the improvement of the crystallinity. Optical characterization results showed that the band edge absorption in the near ultraviolet region (300 nm~400 nm) was increased and shifted. This phenomenon is due to the increase of the carrier concentration with the increase of the ZnO thin film thickness. This result agrees well with the decrease of the resistivity with the increase of the thin film thickness. Consequently, as the thickness of the thin film increases, the stress on the film surface is relaxed, the band gap decreases, and the crystallinity and conductivity are improved.

키워드

MOKRBW_2019_v26n2_15_f0001.png 이미지

Fig. 1. (a) Schematic diagram of the process sequence used to grow ZnO thin films. (b) Thicknesses of ZnO thin films deposited on silicon (100) substrates vs number of ALD growth cycles applied to grow the films.

MOKRBW_2019_v26n2_15_f0002.png 이미지

Fig. 3. Top-view FE-SEM images of ZnO thin films grown at 150℃ on glass substrates, using various numbers of ZnO ALD cycles: (a) 10, (b) 20, (c) 30, (d) 50, (e) 100, and (f) 200 cycles. All scale bars represent 200 nm.

MOKRBW_2019_v26n2_15_f0003.png 이미지

Fig. 4. AFM images of the ZnO thin films grown at 150℃ on silicon (100) substrates, using various numbers of ZnO ALD cycles: (a) 10, (b) 20, (c) 30, (d) 50, (e) 100, and (f) 200 cycles.

MOKRBW_2019_v26n2_15_f0004.png 이미지

Fig. 5. The resistivity values of ZnO films deposited by ALD at 150℃ as a function of number of cycles.

MOKRBW_2019_v26n2_15_f0005.png 이미지

Fig. 2. Thin-film XRD patterns of ZnO films grown on glass substrates for various numbers of ALD growth cycles.

MOKRBW_2019_v26n2_15_f0006.png 이미지

Fig. 6. (a) The optical transmittances of ZnO films with various number of ALD cycles. (b) The optical band gap of the ZnO films with various number of ALD cycles.

참고문헌

  1. T. Minami, "Transparent Conducting Oxide Semiconductors for Transparent Electrodes", Semicond. Sci. Technol., 20(4), S35 (2005). https://doi.org/10.1088/0268-1242/20/4/004
  2. T. Minami, H. Nanto, and S. Takata, "Highly Conductive and Transparent Aluminum Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering", Jpn. J. Appl. Phys., 23(5A), L280 (1984). https://doi.org/10.1143/JJAP.23.L280
  3. V. V. Simakov, O. V. Yakusheva, A. I. Grebennikov, and V. V. Kisin, "Current-Voltage Characteristics of Thin-Film Gas Sensor Structures based on Tin Dioxide", Tech. Phys. Lett., 31(4), 339 (2005). https://doi.org/10.1134/1.1920390
  4. Y.-J. Choi, K.-M. Kang, and H.-H. Park, "Anion-Controlled Passivation Effect of the Atomic Layer Deposited ZnO Films by F Substitution to O-related Defects on the Electronic Band Structure for Transparent Contact Layer of Solar Cell Applications", Solar Energy Materials and Solar Cells, 132, 403 (2015). https://doi.org/10.1016/j.solmat.2014.09.029
  5. R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, "Tin Doped Indium Oxide Thin Films: Electrical Properties", J. Appl. Phys., 83(5), 2631 (1998). https://doi.org/10.1063/1.367025
  6. J. H. Yoo, and H. J. Chang, "Preparation of Polymer Light Emitting Diodes with PFO-Poss Organic Emission Layer on ITO/Glass Substrates", J. Microelectron. Packag. Soc., 13(4), 51 (2006).
  7. J. Y. Kim, Y.-J. Choi, and H.-H. Park, "Surface Oxidation Effect During High Temperature Vacuum Annealing on the Electrical Conductivity of ZnO thin Films Deposited by ALD", J. Microelectron. Packag. Soc., 19(2), 73 (2012). https://doi.org/10.6117/kmeps.2012.19.2.073
  8. J.-H. Lee, K.-H. Ko, and B.-O. Park, "Electrical and Optical Properties of ZnO Transparent Conducting Films by the Sol-Gel Method", Thin Solid Films, 247(1-2), 119 (2003).
  9. P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, "Transparent ZnO Thin-Film Transistor Fabricated by RF Magnetron Sputtering", Jr., Appl. Phys. Lett., 82(7), 1117 (2003). https://doi.org/10.1063/1.1553997
  10. Y.-J. Choi, H.-H. Park, H. Kim, H.-H. Park, H. J. Chang, and H. Jeon, "Fabrication and Characterization of Direct-Patternable ZnO Films Containing Pt Nanoparticles", Jpn. J. Appl. Phys., 48, 035504 (2009). https://doi.org/10.1143/JJAP.48.035504
  11. X. W. Sun, and H. S. Kwok, "Optical Properties of Epitaxially Grown Zinc Oxide Films on Sapphire by Pulsed Laser Deposition", J. Appl. Phys., 86, 408 (1999). https://doi.org/10.1063/1.370744
  12. H. Z. Wu, K. M. He, D. J. Qiu, and D. M. Huang, "Low-Temperature Epitaxy of ZnO Films on (001) and Silica by Reactive E-Beam Evaporation", J. Cryst. Growth., 217(1-2), 131 (2000). https://doi.org/10.1016/S0022-0248(00)00397-3
  13. M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, "Optical and Structural Investigation of ZnO Thin Films Prepared by Chemical Vapor Deposition (CVD)", Thin Solid Films, 403, 485 (2002). https://doi.org/10.1016/S0040-6090(01)01544-9
  14. Y.-J. Choi, and H.-H. Park, "A Simple Approach to The Fabrication of Fluorine-Doped Zinc Oxide Thin Films by Atomic Layer Deposition at Low Temperatures and an Investigation into The Growth Mode", J. Mater. Chem. C., 2(1), 98 (2014). https://doi.org/10.1039/C3TC31478B
  15. K.-M. Kang, and H.-H. Park. "Effect of Atomic Layer Deposition Temperature on the Growth Orientation, Morphology, and Electrical, Optical, and Band-Structural Properties of ZnO and Fluorine-Doped ZnO Thin Films", The Journal of Physical Chemistry C, 122(1), 377 (2017). https://doi.org/10.1021/acs.jpcc.7b08943
  16. J.-S. Na, Q. Peng, G. Scarel, and G. N. Parson, "Role of Gas Doping Sequence in Surface Reactions and Dopant Incorporation during Atomic Layer Deposition of Al-doped ZnO", Chem. Mater., 21(23), 5585 (2009). https://doi.org/10.1021/cm901404p
  17. J. W. Elam, and S. M. George, "Growth of ZnO/Al2O3 Alloy Films using Atomic Layer Deposition Techniques", Chem. Mater., 15(4), 1020 (2003). https://doi.org/10.1021/cm020607+
  18. A. W. Ott, and R. P. H. Chang, "Atomic Layer-Controlled Growth of Transparent Conducting ZnO on Plastic Substrates", Mater. Chem. Phys., 58(2), 132 (1999). https://doi.org/10.1016/S0254-0584(98)00264-8
  19. S. K. Kim, C. S. Hwang, S. H. Ko Park, and S. J. Yun, "Comparison between ZnO Films Grown by Atomic Layer Deposition using $H_2O$ or $O_3$ as Oxidant", Thin Solid Films, 478(1-2), 103 (2005). https://doi.org/10.1016/j.tsf.2004.10.015
  20. S. H. Ko Park, and Y. E. Lee, "Controlling Preferred Orientation of ZnO Thin Films by Atomic Layer Deposition", J. Mater. Sci., 39(6), 2195 (2004). https://doi.org/10.1023/B:JMSC.0000017786.81842.ae
  21. H. Makino, S. Kishimoto, T. Yamada, A. Miyake, N. Yamamoto, and T. Yamamoto, "Effects of Surface Pretreatment on Growth of ZnO on Glass Substrate", Physica Status Solidi (a), 205(8), 1971 (2008). https://doi.org/10.1002/pssa.200778912
  22. M. Ohring, "The Materials Science of Thin Films", 2, Academic Press, New York, (2001).
  23. M. Marinov, and D. Dobrev, "The Change in the Structure of Vacuum-Condensed Hexagonal Close-Packed Metal Films on Ion Bombardment", Thin Solid Films, 42(3), 265 (1977). https://doi.org/10.1016/0040-6090(77)90361-3
  24. M. D. McCluskey, and S. J. Jokela, "Defects in ZnO", J. Appl. Phys., 106(7), 071101 (2009). https://doi.org/10.1063/1.3216464
  25. J. Wu, J. Cao, W.-Q. Han, A. Janotti, and H.-C. Kim, "Functional Metal Oxide Nano-Structures", 149, Springer, New York, (2012).
  26. C. G. Van de Walle, and J. Neugebauer, "Universal Alignment of Hydrogen Levels in Semiconductors, Insulators and Solutions", Nature, 423, 626 (2003). https://doi.org/10.1038/nature01665
  27. M. D. McCluskey, and S. J. Jokela, "Sources of n-Type Conductivity in ZnO", Phys. B., 355, 401 (2007). https://doi.org/10.1016/j.physb.2004.11.068
  28. H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, "Semiconducting Transparent Thin Films", Institute of Physics Publishing, Philadelphia (1995).
  29. S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, "Blueshift of Optical Band Gap in ZnO Thin Films Grown by Metal-Organic Chemical-Vapor Deposition", J. Appl. Phys., 98(1), 013505 (2005). https://doi.org/10.1063/1.1940137
  30. Y. Kayanuma, "Quantum-Size Effects of Interacting Electrons and Holes in Semi-Conductor Microcrystals with Spherical Shape", Phys. Rev. B: Condens. Matter., 38(14), 9797 (1988). https://doi.org/10.1103/PhysRevB.38.9797
  31. L. E. Brus, "Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: the Size Dependence of the Lowest Excited Electronic State", J. Chem. Phys., 80(9), 4403 (1984). https://doi.org/10.1063/1.447218