DOI QR코드

DOI QR Code

Blood transcriptome resources of chinstrap (Pygoscelis antarcticus) and gentoo (Pygoscelis papua) penguins from the South Shetland Islands, Antarctica

  • Kim, Bo-Mi (Unit of Polar Genomics, Korea Polar Research Institute) ;
  • Jeong, Jihye (Unit of Polar Genomics, Korea Polar Research Institute) ;
  • Jo, Euna (Unit of Polar Genomics, Korea Polar Research Institute) ;
  • Ahn, Do-Hwan (Unit of Polar Genomics, Korea Polar Research Institute) ;
  • Kim, Jeong-Hoon (Department of Polar Life Science, Korea Polar Research Institute) ;
  • Rhee, Jae-Sung (Department of Marine Science, College of Natural Sciences, Incheon National University) ;
  • Park, Hyun (Unit of Polar Genomics, Korea Polar Research Institute)
  • Received : 2019.01.16
  • Accepted : 2019.02.01
  • Published : 2019.03.31

Abstract

The chinstrap (Pygoscelis antarcticus) and gentoo (P. papua) penguins are distributed throughout Antarctica and the sub-Antarctic islands. In this study, high-quality de novo assemblies of blood transcriptomes from these penguins were generated using the Illumina MiSeq platform. A total of 22.2 and 21.8 raw reads were obtained from chinstrap and gentoo penguins, respectively. These reads were assembled using the Oases assembly platform and resulted in 26,036 and 21,854 contigs with N50 values of 929 and 933 base pairs, respectively. Functional gene annotations through pathway analyses of the Gene Ontology, EuKaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were performed for each blood transcriptome, resulting in a similar compositional order between the two transcriptomes. Ortholog comparisons with previously published transcriptomes from the $Ad{\acute{e}}lie$ (P. adeliae) and emperor (Aptenodytes forsteri) penguins revealed that a high proportion of the four penguins' transcriptomes had significant sequence homology. Because blood and tissues of penguins have been used to monitor pollution in Antarctica, immune parameters in blood could be important indicators for understanding the health status of penguins and other Antarctic animals. In the blood transcriptomes, KEGG analyses detected many essential genes involved in the major innate immunity pathways, which are key metabolic pathways for maintaining homeostasis against exogenous infections or toxins. Blood transcriptome studies such as this may be useful for checking the immune and health status of penguins without sacrifice.

Keywords

References

  1. Stonehouse B. Introduction: the Spheniscidae. In: The Biology of Penguins (Stonehouse B, ed.). London: MacMillan Press, 1975. pp. 1-15.
  2. Williams TD. The Penguins: Spheniscidae. Oxford: Oxford University Press, 1995.
  3. Lynnes A, Reid K, Croxall J, Trathan P. Conflict or co-existence? Foraging distribution and competition for prey between Adelie and chinstrap penguins. Mar Biol 2002;141:1165-1174. https://doi.org/10.1007/s00227-002-0899-1
  4. Hinke JT, Salwicka K, Trivelpiece SG, Watters GM, Trivelpiece WZ. Divergent responses of Pygoscelis penguins reveal a common environmental driver. Oecologia 2007;153:845-855. https://doi.org/10.1007/s00442-007-0781-4
  5. Negrete P, Sallaberry M, Barcelo G, Maldonado K, Perona F, McGill RA, et al. Temporal variation in isotopic composition of Pygoscelis penguins at Ardley Island, Antarctic: are foraging habits impacted by environmental change? Polar Biol 2017;40:903-916. https://doi.org/10.1007/s00300-016-2017-8
  6. Black CE. A comprehensive review of the phenology of Pygoscelis penguins. Polar Biol 2016;39:405-432. https://doi.org/10.1007/s00300-015-1807-8
  7. Cimino MA, Lynch HJ, Saba VS, Oliver MJ. Projected asymmetric response of Adelie penguins to Antarctic climate change. Sci Rep 2016;6:28785. https://doi.org/10.1038/srep28785
  8. Boersma PD. Penguins as marine sentinels. BioScience 2008;58:597-607. https://doi.org/10.1641/B580707
  9. Trathan PN, Garcia-Borboroglu P, Boersma D, Bost CA, Crawford RJ, Crossin GT, et al. Pollution, habitat loss, fishing, and climate change as critical threats to penguins. Conserv Biol 2015;29:31-41. https://doi.org/10.1111/cobi.12349
  10. Risebrough RW, Walker W, Schmidt TT, de Lappe BW, Connors CW. Transfer of chlorinated biphenyls to Antarctica. Nature 1976;264:738-739. https://doi.org/10.1038/264738a0
  11. Lenihan HS, Oliver JS, Oakden JM, Stephenson MD. Intense and localized benthic marine pollution around McMurdo station, Antarctica. Mar Pollut Bull 1990;21:422-430. https://doi.org/10.1016/0025-326X(90)90761-V
  12. Klanova J, Matykiewiczova N, Macka Z, Prosek P, Laska K, Klan P. Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environ Pollut 2008;152:416-423. https://doi.org/10.1016/j.envpol.2007.06.026
  13. Jones HI, Shellam GR. The occurrence of blood-inhabiting protozoa in captive and free-living penguins. Polar Biol 1999;21:5-10. https://doi.org/10.1007/s003000050327
  14. Bargagli R. Environmental contamination in Antarctic ecosystems. Sci Total Environ 2008;400:212-226. https://doi.org/10.1016/j.scitotenv.2008.06.062
  15. Finger A, Lavers JL, Dann P, Nugegoda D, Orbell JD, Robertson B, et al. The little penguin (Eudyptula minor) as an indicator of coastal trace metal pollution. Environ Pollut 2015;205:365-377. https://doi.org/10.1016/j.envpol.2015.06.022
  16. Vanstreels RE, Braga EM, Catao-Dias JL. Blood parasites of penguins: a critical review. Parasitology 2016;143:931-956. https://doi.org/10.1017/S0031182016000251
  17. Dehnhard N, Jaspers VLB, Demongin L, Van den Steen E, Covaci A, Pinxten R, et al. Organohalogenated contaminants in plasma and eggs of rockhopper penguins: does vitellogenin affect maternal transfer? Environ Pollut 2017;226:277-287. https://doi.org/10.1016/j.envpol.2017.03.071
  18. Espejo W, Celis JE, GonzAlez-Acuna D, Banegas A, Barra R, Chiang G. A global overview of exposure levels and biological effects of trace elements in penguins. Rev Environ Contam Toxicol 2018;245:1-64.
  19. Fantham HB, Porter A. On a Plasmodium (Plasmodium relictum var. spheniscidae, n. var.), observed in four species of penguins. Proc Zool Soc Lond 1944;114:279-292. https://doi.org/10.1111/j.1096-3642.1944.tb00222.x
  20. Hill AG, Howe L, Gartrell BD, Alley MR. Prevalence of Leucocytozoon spp, in the endangered yellow-eyed penguin Megadyptes antipodes. Parasitology 2010;137:1477-1485. https://doi.org/10.1017/S0031182009991910
  21. Argilla LS, Howe L, Gartrell BD, Alley MR. High prevalence of Leucocytozoon spp. in the endangered yellow-eyed penguin (Megadyptes antipodes) in the sub-Antarctic regions of New Zealand. Parasitology 2013;140:672-682. https://doi.org/10.1017/S0031182012002089
  22. Kumar KS, Kannan K, Corsolini S, Evans T, Giesy JP, Nakanishi J, et al. Polychlorinated dibenzo-p-dioxins, dibenzofurans and polychlorinated biphenyls in polar bear, penguin and south polar skua. Environ Pollut 2002;119:151-161. https://doi.org/10.1016/S0269-7491(01)00332-3
  23. Roosens L, Van Den Brink N, Riddle M, Blust R, Neels H, Covaci A. Penguin colonies as secondary sources of contamination with persistent organic pollutants. J Environ Monit 2007;9:822-825. https://doi.org/10.1039/b708103k
  24. Schiavone A, Corsolini S, Borghesi N, Focardi S. Contamination profiles of selected PCB congeners, chlorinated pesticides, PCDD/Fs in Antarctic fur seal pups and penguin eggs. Chemosphere 2009;76:264-269. https://doi.org/10.1016/j.chemosphere.2009.03.007
  25. Corsolini S, Borghesi N, Ademollo N, Focardi S. Chlorinated biphenyls and pesticides in migrating and resident seabirds from East and West Antarctica. Environ Int 2011;37:1329-1335. https://doi.org/10.1016/j.envint.2011.05.017
  26. Meitern R, Andreson R, Horak P. Profile of whole blood gene expression following immune stimulation in a wild passerine. BMC Genomics 2014;15:533. https://doi.org/10.1186/1471-2164-15-533
  27. Chung O, Jin S, Cho YS, Lim J, Kim H, Jho S, et al. The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures. Genome Biol 2015;16:215. https://doi.org/10.1186/s13059-015-0780-4
  28. Tariq M, Chen R, Yuan H, Liu Y, Wu Y, Wang J, et al. De novo transcriptomic analysis of peripheral blood lymphocytes from the Chinese goose: gene discovery and immune system pathway description. PLoS One 2015;10:e0121015. https://doi.org/10.1371/journal.pone.0121015
  29. Videvall E, Cornwallis CK, Palinauskas V, Valkiunas G, Hellgren O. The avian transcriptome response to malaria infection. Mol Biol Evol 2015;32:1255-1267. https://doi.org/10.1093/molbev/msv016
  30. Watson H, Videvall E, Andersson MN, Isaksson C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci Rep 2017;7:44180. https://doi.org/10.1038/srep44180
  31. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  32. Gordon A, Hannon G. FASTQ/A short-reads pre-processing tools. FASTX-Toolkit, 2010. Accessed 2018 Dec 3. Available from: http://hannonlab.cshl.edu/fastx_toolkit
  33. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 2012;28:1086-1092. https://doi.org/10.1093/bioinformatics/bts094
  34. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005;21:3674-3676. https://doi.org/10.1093/bioinformatics/bti610
  35. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008;5:621-628. https://doi.org/10.1038/nmeth.1226
  36. Li C, Zhang Y, Li J, Kong L, Hu H, Pan H, et al. Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. Gigascience 2014;3:27. https://doi.org/10.1186/2047-217X-3-27
  37. Meir JU, Ponganis PJ. High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins. J Exp Biol 2009;212:3330-3338. https://doi.org/10.1242/jeb.033761
  38. Qvist J, Hill RD, Schneider RC, Falke KJ, Liggins GC, Guppy M, et al. Hemoglobin concentrations and blood gas tensions of free-diving Weddell seals. J Appl Physiol (1985) 1986;61:1560-1569. https://doi.org/10.1152/jappl.1986.61.4.1560
  39. Stockard TK, Levenson DH, Berg L, Fransioli JR, Baranov EA, Ponganis PJ. Blood oxygen depletion during rest-associated apneas of northern elephant seals (Mirounga angustirostris). J Exp Biol 2007;210:2607-2617. https://doi.org/10.1242/jeb.008078
  40. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124:783-801. https://doi.org/10.1016/j.cell.2006.02.015
  41. Mohr S, Liew CC. The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends Mol Med 2007;13:422-432. https://doi.org/10.1016/j.molmed.2007.08.003
  42. Chaussabel D. Assessment of immune status using blood transcriptomics and potential implications for global health. Semin Immunol 2015;27:58-66. https://doi.org/10.1016/j.smim.2015.03.002
  43. Spitz J, Becquet V, Rosen DA, Trites AW. A nutrigenomic approach to detect nutritional stress from gene expression in blood samples drawn from Steller sea lions. Comp Biochem Physiol A Mol Integr Physiol 2015;187:214-223. https://doi.org/10.1016/j.cbpa.2015.02.006
  44. Morey JS, Neely MG, Lunardi D, Anderson PE, Schwacke LH, Campbell M, et al. RNA-Seq analysis of seasonal and individual variation in blood transcriptomes of healthy managed bottlenose dolphins. BMC Genomics 2016;17:720. https://doi.org/10.1186/s12864-016-3020-8