DOI QR코드

DOI QR Code

Theoretical Investigation on Collinear Phase Matching Stimulated Polariton Scattering Generating THz Waves with a KTP Crystal

  • Tan, Lian (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Yuan, Bin (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Li, Yongjun (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Wang, Silei (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Zhang, Hongtao (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Bing, Pibin (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Yao, Jianquan (College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University) ;
  • Li, Zhongyang (College of Electric Power, North China University of Water Resources and Electric Power)
  • Received : 2019.02.28
  • Accepted : 2019.05.24
  • Published : 2019.08.25

Abstract

We present a theoretical research concerning terahertz (THz) wave generation with $KTiOPO_4$ (KTP) by collinear phase matching (CPM) stimulated polariton scattering (SPS). Both CPM and corresponding nonzero nonlinear coefficients can be simultaneously realized with $s{\rightarrow}f+f$ in yz plane, $s{\rightarrow}f+s$ with ${\theta}$ < ${\Omega}$ in xz plane and $s{\rightarrow}f+f$ with ${\theta}$ < ${\Omega}$ in xz plane. The effective nonlinear coefficients including electronic nonlinearities and ionic nonlinearities are calculated. Based on the parameter values of refractive indices, absorption coefficients and effective nonlinear coefficients, we simulate THz wave intensities generated with CPM SPS by solving coupled wave equations and give the relationship among the maximum THz wave intensity, optimal crystal length and the angle ${\theta}$. The calculation results demonstrate that CPM SPS with KTP can generate THz waves with high intensities and quantum conversion efficiencies.

Keywords

KGHHD@_2019_v3n4_342_f0001.png 이미지

FIG. 1. Refractive indices and absorption coefficients of a THz wave at 1 THz. (a) and (b) xy plane, (c) and (d) yz plane, (e) and (f) xz plane.

KGHHD@_2019_v3n4_342_f0002.png 이미지

FIG. 2. THz frequencies versus θ with CPM for KTP with a pump wavelength of 1.064 μm. (a) s→f+s with θ < Ω and s→f+f with θ > Ω in the xz plane, (b) s→f+f in the yz plane.

KGHHD@_2019_v3n4_342_f0003.png 이미지

FIG. 3. The effective nonlinear coefficient deff versus THz frequencies by a pump wavelength of 1.064 μm with θ of 5°, 30°, 45°, 60° and 90°.

KGHHD@_2019_v3n4_342_f0004.png 이미지

FIG. 4. THz wave intensities versus crystal length with a pump wavelength of 1.064 μm. Pump intensity Ip = 10 MW/mm2, initial Stokes intensity Is = 10 W/mm2. (a) s→f+s with θ < Ω in the xz plane, θ = 5°, 10° and 15°, (b) s→f+f with θ > Ω in the xz plane, θ = 21°, 24° and 27°, (c) s→f+f in the yz plane, θ = 4°, 8° and 12°.

KGHHD@_2019_v3n4_342_f0005.png 이미지

FIG. 5. The maximum THz wave intensity and optimal crystal length versus the angle θ with a pump wavelength of 1.064 μm. Pump intensity Ip = 10 MW/mm2, initial Stokes intensity Is = 10 W/mm2.

KGHHD@_2019_v3n4_342_f0006.png 이미지

FIG. 6. THz wave intensities versus crystal length for s→f+f in the xz plane with a pump wavelength of 1.064 μm and θ of 5°. Pump intensity Ip = 10, 20, 30, 40 and 50 MW/mm2, initial Stokes intensities Is = 10 W/mm2.

KGHHD@_2019_v3n4_342_f0007.png 이미지

FIG. 7. The maximum THz wave intensity and quantum conversion efficiency versus pump intensity Ip for s→f+s in the xz plane with a pump wavelength of 1.064 μm and θ of 5°. Initial Stokes intensity Is = 10 W/mm2.

TABLE 1. CPM conditions and the corresponding nonlinear coefficients for KTP with pump wavelength of 1.064 μm. Y indicates CPM can satisfy, and N indicates CPM cannot satisfy

KGHHD@_2019_v3n4_342_t0001.png 이미지

References

  1. K. Kawase, J. Shikata, and H. Ito, "Terahertz wave parametric source," J. Phys. D: Appl. Phys. 35, R1-R14 (2002). https://doi.org/10.1088/0022-3727/35/3/201
  2. T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, "THz polariton laser using an intracavity $Mg:LiNbO_3$ crystal with protective Teflon coating," Opt. Express 25, 3991-3999 (2017). https://doi.org/10.1364/OE.25.003991
  3. H. Jang, G. Strömqvist, V. Pasiskevicius, and C. Canalias, "Control of forward stimulated polariton scattering in periodically-poled KTP crystals," Opt. Express 21, 27277-27283 (2013). https://doi.org/10.1364/OE.21.027277
  4. T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, "Tunable 3-6 THz polariton laser exceeding 0.1 mW average output power based on crystalline $RbTiOPO_4$," IEEE J. Sel. Top. Quantum Electron. 24, 1-6 (2018). https://doi.org/10.1070/QE1994v024n01ABEH001585
  5. U. T. Schwarz and M. Maier, "Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements," Phys. Rev. B. 58, 766-775 (1998). https://doi.org/10.1103/PhysRevB.58.766
  6. S. S. Sussman, Tunable light scattering from transverse optical modes in lithium niobate; Report No. su-mlr-1851 (1970); Microwave Laboratory, Stanford University: Stanford, CA, USA (1971).
  7. T. Ikari, X. Zhang, H. Minamide, and H. Ito, "THz-wave parametric oscillator with a surface-emitted configuration," Opt. Express 14, 1604-1610 (2006). https://doi.org/10.1364/OE.14.001604
  8. J. Kiessling, F. Fuchs, K. Buse, and I. Breunig, "Pumpenhanced optical parametric oscillator generating continuous wave tunable terahertz radiation," Opt. Lett. 36, 4374-4376 (2011). https://doi.org/10.1364/OL.36.004374
  9. D. H. Wu and T. Ikari, "Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam," Appl. Phys. Lett. 95, 141105 (2009). https://doi.org/10.1063/1.3240871
  10. D. N. Nikogosyan, Nonlinear Optical Crystals: a Complete Survey (Springer, New York, USA, 2005).
  11. F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, "$KxRb_{1-x}TiOPO_4$: a new nonlinear optical material," J. Appl. Phys. 47, 4980-4985 (1976). https://doi.org/10.1063/1.322459
  12. H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, and Z. Q. Chen, "Multi-watt power blue light generation by intracavity sum-frequency-mixing in $KTiOPO_4$ crystal," Opt. Express 16, 2989-2994 (2008). https://doi.org/10.1364/OE.16.002989
  13. G. C. Bhar, A. M. Rudra, A. K. Chaudhary, T. Sasaki, and Y. Mori, "Highly efficient difference-frequency generation in KTP," Appl. Phys. B: Laser Opt. 63, 141-144 (1996). https://doi.org/10.1007/BF01095264
  14. F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, "Continuous-wave, singly resonant, intracavity parametric oscillator," Opt. Lett. 22, 75-77 (1997). https://doi.org/10.1364/OL.22.000075
  15. M. H. Wu, Y. C. Chiu, T. D. Wang, G. Zhao, A. Zukauskas, F. Laurell, and Y. C. Huang, "Terahertz parametric generation and amplification from potassium titanyl phosphate in comparison with lithium niobate and lithium tantalate," Opt. Express 24, 25964-25973 (2016). https://doi.org/10.1364/OE.24.025964
  16. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, "Terahertz parametric oscillator based on $KTiOPO_4$ crystal," Opt. Lett. 39, 3706-3709 (2014). https://doi.org/10.1364/OL.39.003706
  17. T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, "Competition effects between stimulated Raman and polariton scattering in intracavity $KTiOPO_4$ crystal," in Proc. OSA Technical Digest (online) (Optical Society of America, 2015), paper ATu3A.3.
  18. G. Kugel, F. Brehat, B. Wyncke, M. Fontana, G. Marnier, C. C. Nedelec, and J. Mangin, "The vibrational spectrum of a $KTiOPO_4$ single crystal studied by Raman and infrared reflectivity spectroscopy," J. Phys. C. 21, 5565-5583 (1988). https://doi.org/10.1088/0022-3719/21/32/011
  19. J. G. Huang, Z. M. Huang, N. A. Nikolaev, A. A. Mamrashev, V. D. Antsygin, O. I. Potaturkin, A. B. Meshalkin, A. B. Kaplun, G. V. Lanskii, Y. M. Andreev, D. M. Ezhov, and V. A. Svetlichnyi, "Phase matching in RT KTP crystal for down-conversion into the THz range," Laser Phys. Lett. 15, 075401 (2018). https://doi.org/10.1088/1612-202X/aabb30
  20. C. Alberdi, J. M. Dineiro, B. Hernandez, and C. Saenz, "General expressions for the refractive indices of absorbing biaxial media as a function of the angle of incidence," J. Opt. Soc. Am. A 32, 228-237 (2015). https://doi.org/10.1364/JOSAA.32.000228
  21. A. Mamrashev, N. Nikolaev, V. Antsygin, Y. Andreev, G. Lanskii, and A. Meshalkin, "Optical properties of KTP crystals and their potential for terahertz generation," Crystals 8, 310 (2018). https://doi.org/10.3390/cryst8080310
  22. V. D. Antsygin, A. B. Kaplun, A. A. Mamsharov, N. A. Nikolaev, and O. I. Potaturkin, "Terahertz optical properties of potassium titanyl phosphate crystals," Opt. Express 22, 25436-25443 (2014). https://doi.org/10.1364/OE.22.025436