FIG. 1. (a) Schematic of a single nanoslit, the intermediate zone, and an infinite nanoslit array. (b) Parameter descriptions and simulation conditions of the nanoslit array.
FIG. 2. Optical phase shift vs. number of slits when (a) varying duty cycle and (b) varying thickness. The phase-invariant conditions are marked by thick black lines.
FIG. 3. Phase shift vs. number of slits for various slit widths at duty cycles of (a) 0.7 and (b) 0.3. Phase shift vs. period and total array length at duty cycles of (c) 0.7 and (d) 0.3. The phase-invariant conditions are marked by a thick black line in Fig. 3(b) and a dashed red line in Fig. 3(d).
FIG. 4. Plate design mechanism of the TE-MFZP based on virtual point source.
FIG. 5. Field intensity of (a) the conventional MFZP and (b) the TE-MFZP. Cross-sections of the field intensity (c) perpendicular and (d) parallel to the propagation axis for an x-polarized input beam.
References
- M. L. Brongersma and P. G. Kik, Surface plasmon nanophotonics (Springer, Dordrecht, 2007).
- H. Lan and Y. Ding, "Nanoimprint lithography," in Lithography, M. Wang. ed. (InTechOpen, London, UK, 2010), pp. 457-494.
- H. Kim, "Plasmonics on optical fiber platforms," in Plasmonics, T. Gric. ed. (IntechOpen, London, UK, 2018), Chapter 10.
- F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, "Hybrid bilayer plasmonic metasurface efficiently manipulates visible light," Sci. Adv. 2, e1501168 (2016). https://doi.org/10.1126/sciadv.1501168
- D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science 345, 298-302 (2014). https://doi.org/10.1126/science.1253213
- D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). https://doi.org/10.1126/science.1133628
- N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and engineering explorations (John Wiley & Sons, US, 2006).
- P. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov, F. Strohkendl, Y. A. Zakharenkov, R. K. Dodds, and R. Byren, "All-dielectric subwavelength metasurface focusing lens," Opt. Express 22, 26212-26221 (2014). https://doi.org/10.1364/OE.22.026212
- S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, "Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces," Nano Lett. 16, 5426-5432 (2016). https://doi.org/10.1021/acs.nanolett.6b01816
- E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light: Sci. Appl. 3, e167 (2014). https://doi.org/10.1038/lsa.2014.48
- X. Yi, P. Huang, X. Huang, Z. Xu, C. Zhang, J. Zhao, X. Liu, Y. Ai, and H. Chen, "Operation of polarization order of vector beams with cascaded metasurfaces," Appl. Phys. B 123, 243 (2017).
- N. Nookala, J. Xu, O. Wolf, S. March, R. Sarma, S. Bank, J. Klem, I. Brener, and M. Belkin, "Mid-infrared second-harmonic generation in ultra-thin plasmonic metasurfaces without a full-metal backplane," Appl. Phys. B 124, 132 (2018).
- X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, "Ultra-thin, planar, Babinet-inverted plasmonic metalenses," Light: Sci. Appl. 2, e72 (2013). https://doi.org/10.1038/lsa.2013.28
- S.-Y. Lee, K. Kim, G.-Y. Lee, and B. Lee, "Polarization-multiplexed plasmonic phase generation with distributed nanoslits," Opt. Express 23, 15598-15607 (2015). https://doi.org/10.1364/OE.23.015598
- H. Kim, J. Kim, H. An, Y. Lee, G.-y. Lee, J. Na, K. Park, S. Lee, S.-Y. Lee, B. Lee, and Y. Jeong, "Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light," Opt. Express 25, 30290-30303 (2017). https://doi.org/10.1364/OE.25.030290
- M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science 352, 1190-1194 (2016). https://doi.org/10.1126/science.aaf6644
- E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, "A super-oscillatory lens optical microscope for subwavelength imaging," Nat. Mater. 11, 432-435 (2012). https://doi.org/10.1038/nmat3280
- C. Choi, S.-J. Kim, J.-G. Yun, J. Sung, S.-Y. Lee, and B. Lee, "Deflection angle switching with a metasurface based on phase-change nanorods," Chin. Opt. Lett. 16, 050009 (2018). https://doi.org/10.3788/COL201816.050009
- J. Kim, H. Kim, G.-Y. Lee, J. Kim, B. Lee, and Y. Jeong, "Numerical and experimental study on multi-focal metallic Fresnel zone plates designed by the phase selection rule via virtual point sources," Appl. Sci. 8, 449 (2018). https://doi.org/10.3390/app8030449
- C. W. Haggans, L. Li, and R. K. Kostuk, "Effective-medium theory of zeroth-order lamellar gratings in conical mountings," J. Opt. Soc. Am. A 10, 2217-2225 (1993). https://doi.org/10.1364/JOSAA.10.002217
- Y. Jeong, L. A. Vazquez-Zuniga, S. J. Lee, G. Choi, Y. Kwon, and H. Kim, "High-power fiber lasers," in Proc. 2012 17th Opto-Electronics and Communications Conference, (Korea, Jul. 2012), pp. 580-581.
- H. Kim and Y. Jeong, "Theoretical and numerical study of cylindrical-vector-mode radiation characteristics in periodic metallic annular slits and their applications," Curr. Opt. Photon. 2, 482-487 (2018). https://doi.org/10.3807/COPP.2018.2.5.482
- J. Kim, J. Kim, J. Na, and Y. Jeong, "Numerical study of a novel bi-focal metallic fresnel zone plate having shallow depth-of-field characteristics," Curr. Opt. Photon. 2, 147-152 (2018). https://doi.org/10.3807/COPP.2018.2.2.147
- H. Kim, "Metallic triangular pillar grating arrays for high transmission polarizers for air:glass interfaces," Jpn. J. Appl. Phys. 58, 042001 (2019). https://doi.org/10.7567/1347-4065/ab0274
- N. T. Trung, D. Lee, H. K. Sung, and S. Lim, "Angle-and polarization-insensitive metamaterial absorber based on vertical and horizontal symmetric slotted sectors," Appl Opt. 55, 8301-8307 (2016). https://doi.org/10.1364/AO.55.008301
- S.-Y. Lee, "Design of a plasmonic switch using ultrathin chalcogenide phase-change material," Curr. Opt. Photon. 1, 239-246 (2017). https://doi.org/10.3807/COPP.2017.1.3.239