References
- Craig SA. Betaine in human nutrition. Am J Clin Nutr. 2004;80:539-549. https://doi.org/10.1093/ajcn/80.3.539
- Kempson SA, Vovor-Dassu K, Day C. Betaine transport in kidney and liver: use of betaine in liver injury. Cell Physiol Biochem. 2013;32:32-40. https://doi.org/10.1159/000356622
- Teixido N, Canamas T, Usall J, et al. Accumulation of the compatible solutes, glycinebetaine and ectoine, in osmotic stress adaptation and heat shock cross-protection in the biocontrol agent Pantoea agglomerans CPA-2. Lett Appl Microbiol. 2005;41:248-252. https://doi.org/10.1111/j.1472-765X.2005.01757.x
- Burnett CL, Bergfeld WF, Belsito DV, et al. Safety assessment of alkyl betaines as used in cosmetics. Int J Toxicol. 2018;37:28S-46S. https://doi.org/10.1177/1091581818773354
- Birnie CR, Malamud D, Schnaare RL. Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N, N-dimethylamine oxides with variations in chain length. Antimicrob Agents Chemother. 2000;44:2514-2517. https://doi.org/10.1128/AAC.44.9.2514-2517.2000
- Ahlstrom B, Thompson RA, Edebo L. The effect of hydrocarbon chain length, pH, and temperature on the binding and bactericidal effect of amphiphilic betaine esters on Salmonella typhimurium. APMIS. 1999;107:318-324. https://doi.org/10.1111/j.1699-0463.1999.tb01560.x
- Lindstedt M, Allenmark S, Thompson RA, et al. Antimicrobial activity of betaine esters, quaternary ammonium amphiphiles which spontaneously hydrolyze into nontoxic components. Antimicrob Agents Chemother. 1990;34:1949-1954. https://doi.org/10.1128/AAC.34.10.1949
- Diez-Pascual AM, Diez-Vicente AL. Poly(propylene fumarate)/polyethylene glycol-modified graphene oxide nanocomposites for tissue engineering. ACS Appl Mater Interfaces. 2016;8:17902-17914. https://doi.org/10.1021/acsami.6b05635
- Xu Z, Wang Z, Yuan C, et al. Dandruff is associated with the conjoined interactions between host and microorganisms. Sci Rep. 2016;6:srep24877.
- Findley K, Oh J, Yang J, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498:367-370. https://doi.org/10.1038/nature12171
- Clavaud C, Jourdain R, Bar-Hen A, et al. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS One. 2013;8:e58203. https://doi.org/10.1371/journal.pone.0058203
- Takemoto A, Cho O, Morohoshi Y, et al. Molecular characterization of the skin fungal microbiome in patients with psoriasis. J Dermatol. 2015;42:166-170. https://doi.org/10.1111/1346-8138.12739
- Wang L, Clavaud C, Bar-Hen A, et al. Characterization of the major bacterial-fungal populations colonizing dandruff scalps in Shanghai, China, shows microbial disequilibrium. Exp Dermatol. 2015;24:398-400. https://doi.org/10.1111/exd.12684
- Park T, Kim HJ, Myeong NR, et al. Collapse of human scalp microbiome network in dandruff and seborrhoeic dermatitis. Exp Dermatol. 2017;26:835-838. https://doi.org/10.1111/exd.13293
- Park M, Cho YJ, Lee YW, et al. Whole genome sequencing analysis of the cutaneous pathogenic yeast Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff. Mycoses. 2017;60:188-197. https://doi.org/10.1111/myc.12586
- Perfect JR, Ketabchi N, Cox GM, et al. Karyotyping of Cryptococcus neoformans as an epidemiological tool. J Clin Microbiol. 1993;31: 3305-3309. https://doi.org/10.1128/JCM.31.12.3305-3309.1993
- Park M, Jung WH, Han SH, et al. Characterisation and expression analysis of MrLip1, a Class 3 Family Lipase of Malassezia restricta. Mycoses. 2015;58:671-678. https://doi.org/10.1111/myc.12412
- Toffaletti DL, Rude TH, Johnston SA, et al. Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol. 1993;175:1405-1411. https://doi.org/10.1128/jb.175.5.1405-1411.1993
- CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. 3rd edition. CLSI document M27-A3. Wayne (PA): Clinical and Laboratory Standards Institute; 2008.
- Sugita T, Tajima M, Ito T, et al. Antifungal activities of tacrolimus and azole agents against the eleven currently accepted Malassezia species. J Clin Microbiol. 2005;43:2824-2829. https://doi.org/10.1128/JCM.43.6.2824-2829.2005
- Chun CD, Madhani HD. Applying genetics and molecular biology to the study of the human pathogen Cryptococcus neoformans. Methods Enzymol. 2010;470:797-831. https://doi.org/10.1016/S0076-6879(10)70033-1
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 DDCT method. Methods. 2001;25:402-408. https://doi.org/10.1006/meth.2001.1262
- Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114-2120. https://doi.org/10.1093/bioinformatics/btu170
- Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357-359. https://doi.org/10.1038/nmeth.1923
- Liao Y, Smyth GK, Shi W. The subread aligner: fast, accurate and scalable read mapping by seedand-vote. Nucleic Acids Res. 2013;41:e108. https://doi.org/10.1093/nar/gkt214
- Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281-285. https://doi.org/10.1007/s12064-012-0162-3
- Wei T, Geijer S, Lindberg M, et al. Detergents with different chemical properties induce variable degree of cytotoxicity and mRNA expression of lipid-metabolizing enzymes and differentiation markers in cultured keratinocytes. Toxicol in Vitro. 2006;20:1387-1394. https://doi.org/10.1016/j.tiv.2006.06.002
- Mowad CM. Contact allergens of the year. Adv Dermatol. 2004;20:237-255.
- Giaever G, Nislow C. The yeast deletion collection: a decade of functional genomics. Genetics. 2014;197:451-465. https://doi.org/10.1534/genetics.114.161620
- Motaung TE, Ells R, Pohl CH, et al. Genome-wide functional analysis in Candida albicans. Virulence. 2017;8:1563-1579. https://doi.org/10.1080/21505594.2017.1292198
- Xu D, Jiang B, Ketela T, et al. Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog. 2007;3:e92. https://doi.org/10.1371/journal.ppat.0030092
- Saikia S, Oliveira D, Hu G, et al. Role of ferric reductases in iron acquisition and virulence in the fungal pathogen Cryptococcus neoformans. Infect Immun. 2014;82:839-850. https://doi.org/10.1128/IAI.01357-13
- Jung WH, Hu G, Kuo W, et al. Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans. Eukaryot Cell. 2009;8:1511-1520. https://doi.org/10.1128/EC.00166-09
- Jung WH, Sham A, Lian T, et al. Iron source preference and regulation of iron uptake in Cryptococcus neoformans. PLoS Pathog. 2008;4:e45. https://doi.org/10.1371/journal.ppat.0040045
- Sant DG, Tupe SG, Ramana CV, et al. Fungal cell membrane-promising drug target for antifungal therapy. J Appl Microbiol. 2016;21:1498-1510.
- Chang YC, Bien CM, Lee H, et al. Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans. Mol Microbiol. 2007;64:614-629. https://doi.org/10.1111/j.1365-2958.2007.05676.x
- Chun CD, Liu OW, Madhani HD. A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLoS Pathog. 2007;3:e22. https://doi.org/10.1371/journal.ppat.0030022
- Kim JH, Lee HO, Cho YJ, et al. A vanillin derivative causes mitochondrial dysfunction and triggers oxidative stress in Cryptococcus neoformans. PLoS One. 2014;9:e89122. https://doi.org/10.1371/journal.pone.0089122
- Kim J, Cho YJ, Do E, et al. A defect in iron uptake enhances the susceptibility of Cryptococcus neoformans to azole antifungal drugs. Fungal Genet Biol. 2012;49:955-966. https://doi.org/10.1016/j.fgb.2012.08.006
- Sun N, Fonzi W, Chen H, et al. Azole susceptibility and transcriptome profiling in Candida albicans mitochondrial electron transport chain complex I mutants. Antimicrob Agents Chemother. 2013;57:532-542. https://doi.org/10.1128/AAC.01520-12
- Stalhberger T, Simenel C, Clavaud C, et al. Chemical organization of the cell wall polysaccharide core of Malassezia restricta. J Biol Chem. 2014; 289:12647-12656. https://doi.org/10.1074/jbc.M113.547034
Cited by
- Bioactive antifungal metabolites produced by Streptomyces amritsarensis V31 help to control diverse phytopathogenic fungi vol.52, pp.4, 2019, https://doi.org/10.1007/s42770-021-00625-w