DOI QR코드

DOI QR Code

Isolation, Identification and Enzymatic Activity of Halotolerant and Halophilic Fungi from the Great Sebkha of Oran in Northwestern of Algeria

  • Chamekh, Rajaa (Faculty of Science of Nature and Life, Laboratory Research on Biological Systems and Geomatics, Mascara University) ;
  • Deniel, Franck (Laboratoire Universitaire de Biodiversite et d'Ecologie Microbienne, EA3882, Universite de Brest, ESIAB) ;
  • Donot, Christelle (Laboratoire Universitaire de Biodiversite et d'Ecologie Microbienne, EA3882, Universite de Brest, ESIAB) ;
  • Jany, Jean-Luc (Laboratoire Universitaire de Biodiversite et d'Ecologie Microbienne, EA3882, Universite de Brest, ESIAB) ;
  • Nodet, Patrice (Laboratoire Universitaire de Biodiversite et d'Ecologie Microbienne, EA3882, Universite de Brest, ESIAB) ;
  • Belabid, Lakhder (Faculty of Science of Nature and Life, Laboratory Research on Biological Systems and Geomatics, Mascara University)
  • Received : 2019.03.27
  • Accepted : 2019.05.20
  • Published : 2019.06.01

Abstract

The Great Sebkha of Oran is a closed depression located in northwestern of Algeria. Despite the ranking of this sebkha among the wetlands of global importance by Ramsar Convention in 2002, no studies on the fungal community in this area have been carried out. In our study, samples were collected from two different regions. The first region is characterized by halophilic vegetation and cereal crops and the second by a total absence of vegetation. The isolated strains were identified morphologically then by molecular analysis. The biotechnological interest of the strains was evaluated by testing their ability to grow at different concentration of NaCl and to produce extracellular enzymes (i.e., lipase, amylase, protease, and cellulase) on solid medium. The results showed that the soil of sebkha is alkaline, with the exception of the soil of cereal crops that is neutral, and extremely saline. In this work, the species Gymnoascus halophilus, Trichoderma gamsii, the two phytopathogenic fungi, Fusarium brachygibbosum and Penicillium allii, and the teleomorphic form of P. longicatenatum observed for the first time in this species, were isolated for the first time in Algeria. The halotolerance test revealed that the majority of the isolated are halotolerant. Wallemia sp. and two strains of G. halophilus are the only obligate halophilic strains. All strains are capable to secrete at least one of the four tested enzymes. The most interesting species presenting the highest enzymatic index were Aspergillus sp. strain A4, Chaetomium sp. strain H1, P. vinaceum, G. halophilus, Wallemia sp. and Ustilago cynodontis.

Keywords

References

  1. Moussa K. Study of a Sebkha: Sebkha of Oran (Western Algeria), doctoral thesis, University of Oran. 2006. 205p.
  2. Benziane A. The aquifer system of the Great Sebkha of Oran: geological and hydrogeological considerations. Bulletin de L'Institut Scientifique, Rabat, Section Sciences de la Terre. 2013;35:77-92.
  3. Oren A. Halophilic microorganisms and their environments. Dordrecht: Kluwer Academic Publishers; 2002.
  4. Gunde-Cimerman N, Zalar P, Petrovic U, et al. Fungi in the salterns. In: Ventosa A, editor. Halophilic microorganisms. Heidelberg: Springer-Verlag; 2004. p. 103-113.
  5. Gunde-Cimerman N, Zalar P, de Hoog S, et al. Hypersaline waters in salterns natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol. 2000;32:235-240. https://doi.org/10.1111/j.1574-6941.2000.tb00716.x
  6. Butinar L, Sonjak S, Zalar P, et al. Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Botanica Marina. 2005;48:73-79. https://doi.org/10.1515/BOT.2005.007
  7. Cantrell SA, Casillas-Martinez L, Molina M. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res. 2006;110:962-970. https://doi.org/10.1016/j.mycres.2006.06.005
  8. Nayak SS, Gonsalves V, Nazareth SW. Isolation and salt tolerance of halophilic fungi from mangroves and solar salterns in Goa - India. Indian J Mar Sci. 2012;41:164-172.
  9. Guiraud P, Steiman R, Seigle-Murandi F, et al. Mycoflora of soil around the Dead Sea II - Deuteromycetes (except Aspergillus and Penicillium). System Appl Microbiol. 1995;18:318-322. https://doi.org/10.1016/S0723-2020(11)80403-0
  10. Steiman R, Guiraud P, Sage L, et al. Mycoflora of soil around the Dead Sea. I - Ascomycetes (including Aspergillus and Penicillium), Basidiomycetes, Zygomycetes. System Appl Microbiol. 1995;18:310-317. https://doi.org/10.1016/S0723-2020(11)80402-9
  11. Buchalo AS, Nevo E, Wasser SP, et al. Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc Lond. 1998;265:1461-1465. https://doi.org/10.1098/rspb.1998.0458
  12. Grishkan I, Nevo E, Wasser SP. Soil micromycete diversity in the hypersaline Dead Sea coastal area, Israel. Mycol Progress. 2003;2:19-28. https://doi.org/10.1007/s11557-006-0040-9
  13. Nazareth S, Gonsalves V, Nayak S. A first record of obligate halophilic Aspergilli from the Dead Sea. Indian J Microbiol. 2012;52:22-27. https://doi.org/10.1007/s12088-011-0225-z
  14. Abdel-Hafez S. Survey of the mycoflora of desert soils in Saudi Arabia. Mycopathologia. 1982;80:3-8. https://doi.org/10.1007/BF00437171
  15. Sterflinger K, Tesei D, Zakharova K. Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecol. 2012;5:453-462. https://doi.org/10.1016/j.funeco.2011.12.007
  16. Al-Musallam AAS, Al-Sammar HF, Al-Sane NA. Diversity and dominance of fungi inhabiting the sabkha area in Kuwait. Botanica Marina. 2011;54:83-94. https://doi.org/10.1515/BOT.2010.069
  17. Jaouani A, Neifar M, Prigione V, et al. Diversity and enzymatic profiling of halotolerant micromycetes from Sebkha El Melah, a Saharan salt flat in southern Tunisia. Biomed Res Int. 2014;2014:1-11.
  18. Mandeel QA. Biodiversity of the genus Fusarium in saline soil habitats. J Basic Microbiol. 2006;46:480-494. https://doi.org/10.1002/jobm.200510128
  19. Gunde-Cimerman N, Zalar P. Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotechnol. 2001;4;170-179.
  20. Moubasher AH, Abdel-Sater MA, Soliman Z. Diversity of yeasts and filamentous fungi in mud from hypersaline and freshwater bodies in Egypt. Czech Mycol. 2018;70:1-32. https://doi.org/10.33585/cmy.70101
  21. Zalar P, de Hoog GS, Schroers HJ, et al. Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek. 2005;87:311-328. https://doi.org/10.1007/s10482-004-6783-x
  22. Zalar P, de Hoog GS, Schroers HJ, et al. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol. 2007;58:157-183. https://doi.org/10.3114/sim.2007.58.06
  23. Schubert K, Groenewald JZ, Braun U, et al. Biodiversity in the Cladosporium herbarumcomplex (Davidiellaceae, Capnodiales), with standardization of methods for Cladosporium taxonomy and diagnostics. Stud Mycol. 2007;58:105-156. https://doi.org/10.3114/sim.2007.58.05
  24. Zalar P, Frisvad JC, Gunde-Cimerman N, et al. Four new species of Emericella from the Mediterranean region of Europe. Mycologia. 2008;100:779-795. https://doi.org/10.3852/08-078
  25. Zhou N, Zhang Y, Liu F, et al. Gymnoascus species from several special environments, China. Mycologia. 2016;108:179-191. https://doi.org/10.3852/15-086
  26. Oren A. Industrial and environmental applications of halophilic microorganisms. Environ Technol. 2010;31:825-834. https://doi.org/10.1080/09593330903370026
  27. Moreno ML, Perez D, Garcia MT, et al. Halophilic bacteria as a source of novel hydrolytic enzymes. Life. 2013;3:38-51. https://doi.org/10.3390/life3010038
  28. Damare S, Singh P. Raghukumar S. Biotechnology of marine fungi. In: Raghukumar C, editor. Biology of marine fungi. Berlin, Heidelberg: Springer. Progress in Molecular and Subcellular Biology 53;2012. p. 278-291.
  29. Ali I, Siwarungson N, Punnapayak H, et al. Screening of potential biotechnological applications from obligate halophilic fungi, isolated from a man-made solar saltern located in Phetchaburi province, Thailand. Pak J Bot. 2014;46:983-988.
  30. Edbeib MF, Wahab RA, Halophiles HF. Halophiles: biology, adaptation and their role in decontamination of hypersaline environments. World J Microbiol Biotechnol. 2016;32:1-23. https://doi.org/10.1007/s11274-015-1971-6
  31. Gal-Hemed I, Atanasova L, Komon-Zelazowska M, et al. Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microbiol. 2011;77:5100-5109. https://doi.org/10.1128/AEM.00541-11
  32. Pitt JI. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. London: Academic Press Inc; 1979.
  33. Barnett HL, Hunter BB. Illustrated genera of imperfect fungi. Fourth edition. Minnesota, USA: Burgess Publishing Company; 1998.
  34. Samson RA, Hoekstra ES, Frisvad JC, et al. Introduction to food and airborne fungi. 6th Ed. Utrecht: CentraalbureauvoorSchimmelcultures; 2002.
  35. Samson RA, Frisvad JC. Penicillium subgenus Penicillium: new taxonomic schemes, mycotoxins and other extrolites. Utrecht: Studies in Mycology; 2004.
  36. Brygoo Y, Gautier A. Molecular polymorphism of Fusarium strains isolated from wheat and corn ears in France Collects 2003 and 2004. Paper presented at the < conference sur les progres et perspectives de la recherche sur les mycotoxines de Fusarium dans les cereales >. Arcachon, France, 2007.
  37. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61:1323-1330. https://doi.org/10.1128/AEM.61.4.1323-1330.1995
  38. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91:553-556. https://doi.org/10.1080/00275514.1999.12061051
  39. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ editors. PCR protocols: a guide to methods and applications. New-York: Academic Press; 1990. p. 315-322.
  40. Hankin L, Anagnostakis SL. The use of solid media for detection of enzyme production by fungi. Mycologia. 1975;67:597-607. https://doi.org/10.1080/00275514.1975.12019782
  41. Abe CA, Faria CB, De Castro FF, et al. Fungi isolated from maize (Zea mays L.) grains and production of associated enzyme activities. Int J Mol Sci. 2015;16:15328-15346. https://doi.org/10.3390/ijms160715328
  42. Montenecourt BS, Eveleigh DE. Semi quantitative plate assay for determination of cellulose production by Trichoderma viride. Appl Environ Microb. 1977;33:178-183. https://doi.org/10.1128/AEM.33.1.178-183.1977
  43. Kasana RC, Salwan R, Dhar H, et al. A rapid and easy method for detection of microbial cellulases on agar plates using Gram's iodine. Curr Microbiol. 2008;57:503-507. https://doi.org/10.1007/s00284-008-9276-8
  44. Sarath G, De La Motte RS, Wagner FW. Protease assay methods. In: Beynon RJ, Bonde JS, editors. Proteolytics enzymes: a pratical approach. Oxford, UK: University Press; 1989. p. 25-54.
  45. Durand JH. Irrigable soil. Living techniques. (Les sols irrigables. Techniques vivantes). Paris: Univ Press; 1983.
  46. El-Said AHM, Saleem A. Ecological and physiological studies on soil fungi at Western Region, Libya. Mycobiology. 2008;36:1-9. https://doi.org/10.4489/MYCO.2008.36.1.001
  47. Ismail MA, Moubasher AH, Ramadan MA, et al. Extremophilic fungi and chemical analysis of hypersaline, alkaline lakes of Wadi-El-Natrun, Egypt. Int J Tech Res Sci. 2017;1:345-363.
  48. Houbraken J, Visagie CM, Meijer M, et al. A taxonomic and phylogenetic revision of Penicillium section Aspergilloides. Stud Mycol. 2014;78:373-451. https://doi.org/10.1016/j.simyco.2014.09.002
  49. Hujslova M, Kubatova A, ChudiKova M, et al. Diversity of fungal communities in saline and acidic soils in the Soos National Reserve, Czech Repbulic. Mycol Prog. 2010;9:1-15. https://doi.org/10.1007/s11557-009-0611-7
  50. Park MS, Fong JJ, Oh SY, et al. Marine-derived Penicillium in Korea: diversity, enzyme activity, and antifungal properties. Antonie Van Leeuwenhoek. 2014;106:331-345. https://doi.org/10.1007/s10482-014-0205-5
  51. Vincent MA, Pitt JI. Penicillium allii, a new species from Egyptian garlic. Mycologia. 1989;81:300-303. https://doi.org/10.2307/3759715
  52. Overy DP, Frisvad JC, Steinmeier U, et al. Clarification of the agents causing blue mould storage rot upon various flower and vegetable bulbs: implications for mycotoxin contamination. Postharvest Biol Technol. 2005;35:217-221. https://doi.org/10.1016/j.postharvbio.2004.08.001
  53. Valdez JG, Makuch MA, Ordovini AF, et al. First report of Penicillium allii as a field pathogen of garlic (Allium sativum). Plant Pathol. 2006;55:583-583.
  54. Moustafa AF, Al-Musallam AA. Contribution to the fungal flora of Kuwait. Trans Brit Mycol Soc. 1975;65:547-553. https://doi.org/10.1016/S0007-1536(75)80061-1
  55. Macia-Vicente JG, Jansson HB, Abdullah SK, et al. Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiol Ecol. 2008;64:90-105. https://doi.org/10.1111/j.1574-6941.2007.00443.x
  56. Lebogang L, Taylor JE, Mubyana-John T. A preliminary study of the fungi associated with saltpans in Botswana and their anti-microbial properties. Bioremediation, biodiversity and bioavailability. Global Sci Books. 2009;3:61-71.
  57. Gashgari R, Gherbawy Y, Ameen F, et al. Molecular characterization and analysis of antimicrobial activity of endophytic fungi from medicinal plants in Saudi Arabia. Jundishapur J Microbiol. 2016;9:e26157.
  58. Al-Mahmooli IH, Al-Bahri YS, Al-Sadi AM, et al. First report of Euphorbia larica dieback caused by Fusarium brachygibbosum in Oman. Plant Dis. 2013;97:687-687.
  59. Al-Sadi AM, Al-Jabri AH, Al-Mazroui SS, et al. Characterization and pathogenicity of fungi and oomycetes associated with root diseases of date palms in Oman. Crop Prot. 2012;37:1-6. https://doi.org/10.1016/j.cropro.2012.02.011
  60. Trabelsi R, Sellami H, Gharbi Y, et al. Morphological and molecular characterization of Fusarium spp. associated with olive trees dieback in Tunisia. 3 Biotech. 2017;7:28. https://doi.org/10.1007/s13205-016-0587-3
  61. US EPA. Biopesticides registration action document. Trichoderma gamsii strain ICC 080 PC Code: 119207. U.S. Environmental Protection Agency Office of Pesticide Programs, Biopesticides and Pollution Prevention Division. 2010.
  62. Rinu K, Sati P, Pandey A. Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting and antagonistic fungal strain. J Basic Microbiol. 2014;54:408-417. https://doi.org/10.1002/jobm.201200579
  63. Chen JL, Sun SZ, Miao CP, et al. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J Ginseng Res. 2015;40:315-324. https://doi.org/10.1016/j.jgr.2015.09.006
  64. Anand BG, Thomas CKN, Prakash S. In vitro cytotoxicity and antimicrobial activity of Talaromyces flavus SP5 inhabited in the marine sediment of Southern Coast of India. Chin J Nat Med. 2016;14:913-921. https://doi.org/10.1016/S1875-5364(17)30016-X
  65. Ouazzani Chahdi A, Chliyeh M, Mouria B, et al. In vitro and in vivo effect of salinity on the antagonist potential of Trichoderma harzianum and sensitivity of tomato to Verticillium wilt. Int J Recent Sci Res. 2014;5:780-791.
  66. Guo R, Wang Z, Huang Y, et al. Biocontrol potential of saline- or alkaline-tolerant Trichoderma asperellum mutants against three pathogenic fungi under saline or alkaline stress conditions. Braz J Microbiol. 2018;49:236-245. https://doi.org/10.1016/j.bjm.2018.02.008
  67. Jancic S, Nguyen HDT, Frisvad JC, et al. A taxonomic revision of the Wallemia sebi species complex. PLoS One. 2015;10:e0125933. https://doi.org/10.1371/journal.pone.0125933
  68. Jancic S, Zalar P, Kocev D, et al. Halophily reloaded: new insights into the extremophilic lifestyle of Wallemia with the description of Wallemia hederae sp. nov. Fungal Divers. 2016;76:97-118. https://doi.org/10.1007/s13225-015-0333-x
  69. Diaz-Valderrama JR, Nguyen HDT, Aime MC. Wallemia peruviensis sp. nov., a new xerophilic fungus from an agricultural setting in South America. Extremophiles. 2017;21:1017-1025. https://doi.org/10.1007/s00792-017-0960-0
  70. Ali I, Kanhayuwa L, Rachdawong S, et al. Identification, phylogenetic analysis and characterization of obligate halophilic fungi isolated from a man-made solar saltern in Phetchaburi province. Thailand Ann Microbiol. 2013;63:887-895. https://doi.org/10.1007/s13213-012-0540-6
  71. Gonsalves V, Nayak S, Nazareth S. Halophilic fungi in a polyhaline estuarine habitat. J Yeast Fungal Res. 2012;3:30-36.
  72. Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev. 2002;66:300-372. https://doi.org/10.1128/MMBR.66.2.300-372.2002
  73. Gunde-Cimerman N, Ramos J, Plemenitas A. Halotolerant and halophilic fungi. Mycol Res. 2009;113:1231-1241. https://doi.org/10.1016/j.mycres.2009.09.002
  74. Zajc J, Liu YF, Dai WK, et al. Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics. 2013;14:617. https://doi.org/10.1186/1471-2164-14-617
  75. Setati ME. Diversity and industrial potential of hydrolase-producing halophilic/halotolerant Eubacteria. Afr J Biotechnol. 2010;9:1555-1560. https://doi.org/10.5897/AJB10.051
  76. Dalboge H. Expression cloning of fungal enzyme genes: a novel approach for efficient isolation of enzyme genes of industrial relevance. FEMS Microbiol Rev. 1997;21:29-42. https://doi.org/10.1111/j.1574-6976.1997.tb00343.x
  77. Asiry IAM, Badr JM, Youssef D. Penicillivinacine, antimigratory diketopiperazine alkaloid from the marine-derived fungus Penicillium vinaceum. Phytochem Lett. 2015;13:53-58. https://doi.org/10.1016/j.phytol.2015.05.014
  78. Liu S, Su M, Song SJ, et al. Marine-derived Penicillium species as producers of cytotoxic metabolites. Mar Drugs. 2017;15:329. https://doi.org/10.3390/md15100329
  79. Bussamara R, Fuentefria AM, Oliveira ES, et al. Isolation of a lipase secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Bioresour Technol. 2010;101:268-275. https://doi.org/10.1016/j.biortech.2008.10.063
  80. Alex D, Shainu A, Pandey A, et al. Esterase active in polar organic solvents from the yeast Pseudozyma sp. NII 08165. Enzyme Res. 2014;2014:1-10.
  81. Isshiki S, Shitasue S, Mase T, et al. Characterization of an aminopeptidase from Pseudozymahubeiensis 31-B and potential applications. Mycoscience. 2017;58:60-67. https://doi.org/10.1016/j.myc.2016.10.001
  82. Guevarra ED, Tabuchi T. Production of 2-hydroxyparaconic and itatartaric acids by Ustilago cynodontis and simple recovery process of the acids. Agric Biol Chem. 1990;54:2359-2365. https://doi.org/10.1271/bbb1961.54.2359
  83. Morita T, Ishibashi Y, Hirose N, et al. Production and characterization of a glycolipid biosurfactant, mannosylerythritol lipid B, from sugarcane juice by Ustilago scitaminea NBRC 32730. Biosci Biotechnol Biochem. 2011;75:1371-1376. https://doi.org/10.1271/bbb.110221

Cited by

  1. Halotolerant Yeasts: Biodiversity and Potential Application vol.82, pp.5, 2019, https://doi.org/10.15407/microbiolj82.05.065
  2. Isolation and Screening of Fungal Culture Isolated From Algerian Soil for the Production of Cellulase and Xylanase vol.10, pp.5, 2019, https://doi.org/10.22270/jddt.v10i5-s.4493
  3. Bioprospecting for Novel Halophilic and Halotolerant Sources of Hydrolytic Enzymes in Brackish, Saline and Hypersaline Lakes of Romania vol.8, pp.12, 2020, https://doi.org/10.3390/microorganisms8121903
  4. Diversity, distribution, and xerophilic tolerance of cultivable fungi associated with the Antarctic angiosperms vol.44, pp.2, 2019, https://doi.org/10.1007/s00300-021-02799-3
  5. Unveiling Biological Activities of Marine Fungi: The Effect of Sea Salt vol.11, pp.13, 2019, https://doi.org/10.3390/app11136008
  6. Characterization of the Proteolytic Activity of a Halophilic Aspergillus reticulatus Strain SK1-1 Isolated from a Solar Saltern vol.10, pp.1, 2019, https://doi.org/10.3390/microorganisms10010029