DOI QR코드

DOI QR Code

Influence of temperature on the beams behavior strengthened by bonded composite plates

  • Bouazza, Mokhtar (Department of Civil Engineering, University of Tahri Mohamed of Bechar) ;
  • Antar, Kamel (Laboratory of Materials and Hydrology, University of Sidi Bel Abbes) ;
  • Amara, Khaled (Laboratory of Materials and Hydrology, University of Sidi Bel Abbes) ;
  • Benyoucef, Samir (Laboratory of Materials and Hydrology, University of Sidi Bel Abbes) ;
  • Bedia, El Abbes Adda (Centre of Excellence for Advanced Materials Research, King Abdulaziz University)
  • 투고 : 2019.04.13
  • 심사 : 2019.07.15
  • 발행 : 2019.08.10

초록

The purpose of this paper is to investigate the thermal effects on the behaviour reinforced-concrete beams strengthened by bonded angle-ply laminated composites laminates plate $[{\pm}{\theta}n/90m]_S$. Effects of number of $90^{\circ}$ layers and number of ${\pm}{\theta}$ layers on the distributions of interfacial stress in concrete beams reinforced with composite plates have also been studied. The present results represent a simple theoretical model to estimate shear and normal stresses. The effects the temperature, mechanical properties of the fibre orientation angle of the outer layers, the number of cross-ply layers, plate length of the strengthened beam region and adhesive layer thickness on the interfacial shear and normal stresses are investigated and discussed.

키워드

참고문헌

  1. Abdel-Kareem, A.H. (2014), "Shear strengthening of reinforced concrete beams with rectangular web openings by FRP composites", Adv. Concrete Construct., 2(4),281-300. http://dx.doi.org/10.12989/acc.2014.2.4.281/.
  2. Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal effects on the free vibration behavior of composite plate using nth-order shear deformation theory: A micromechanical approach", Iran J. Sci. Technol. Trans. Mech. Eng., 43(1), 61-73. https://doi.org/10.1007/s40997-017-0140-y.
  3. Ait Amar. M, Abdelaziz, H.H. and Tounsi. A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177%2F1099636214526852. https://doi.org/10.1177/1099636214526852
  4. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.
  5. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. http://dx.doi.org/10.12989/cac.2016.17.5.567.
  6. Azmi, M., Kolahchi, R. and Bidgoli, M.R. (2019), "Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load", Adv. Concrete Construct., 7(1), 51-63. https://doi.org/10.12989/acc.2019.7.1.051.
  7. Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), "Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects", Steel Compos. Struct., 21(6), 1347-1368. https://doi.org/10.12989/scs.2016.21.6.1347.
  8. Berardi, V.P., Perrella, M., Feo, L. and Cricri, G. (2017), "Creep behavior of GFRP laminates and their phases: Experimental investigation and analytical modeling", Compos. B Eng., 122, 136-144. https://doi.org/10.1016/j.compositesb.2017.04.015.
  9. Berardi, V.P., Feo, L., Mancusi, G. and De Piano, M. (2018), "Influence of reinforcement viscous properties on reliability of existing structures strengthened with externally bonded composites", Compos. Struct., 200, 532-539. https://doi.org/10.1016/j.compstruct.2018.05.111.
  10. Berardi, V.P., Perrella, M. and Cricri, G. (2019), "Cohesive fracture in composite systems: experimental setup and first results", Frattura ed Integrita Strutturale, 48, 222-229. https://doi.org/10.3221/IGF-ESIS.48.23.
  11. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
  12. Bouazza, M., Lairedj, A., Benseddiq, N. and Khalki, S. (2016), "A refined hyperbolic shear deformation theory for thermal buckling analysis of cross-ply laminated plates", Mech. Res. Commun., 73, 117-126. https://doi.org/10.1016/j.mechrescom.2016.02.015.
  13. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061.
  14. Bousahla, A.A., Benyoucef, S. Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
  15. Carvalho, U.T.F. and Campilho, R.D.S.G. (2017), "Validation of pure tensile and shear cohesive laws obtained by the direct method with single-lap joints", Int. J. Adhes. Adhes., 77, 41-50. https://doi.org/10.1016/j.ijadhadh.2017.04.002.
  16. Chen, P., Chen, S., Guo, W. and Gao, F. (2018), "The interface behavior of a thin piezoelectric film bonded to a graded substrate", Mech. Mater., 127, 26-38. https://doi.org/10.1016/j.mechmat.2018.08.009.
  17. Chen, P., Guo, W., Zhao, Y., Li, E., Yang, Y. and Liu, H. (2019), "Numerical analysis of the strength and interfacial properties of adhesive joints with graded adherends", Int. J. Adhes. Adhes., 90, 88-96. https://doi.org/10.1016/j.ijadhadh.2019.02.003.
  18. Chen, P., Peng, J., Liu, H., Gao, F. and Guo, W. (2018), "The electromechanical behavior of a piezoelectric actuator bonded to a graded substrate including an adhesive layer", Mech. Mater., 123, 77-87. https://doi.org/10.1016/j.mechmat.2018.05.002.
  19. Civalek, O. and Yavas, A. (2008), "Discrete singular convolution for buckling analyses of plates and columns", Struct. Eng. Mech., 29(3)., 279-288. https://doi.org/10.12989/sem.2008.29.3.279.
  20. D'Ambrisi, A., Mezzi, M., Feo, L. and Berardi, V.P. (2014) "Analysis of masonry structures strengthened with polymeric net reinforced cementitious matrix materials", Compos. Struct., 113, 264-271. https://doi.org/10.1016/j.compstruct.2014.03.032.
  21. Daskiran, E.G., Daskiran, M.M. and Gencoglu, M. (2016), "Development of fine grained concretes for textile reinforced cementitious composites", Comput. Concrete, 18 (2), 297-295. http://dx.doi.org/10.12989/cac.2016.18.2.279.
  22. Ellali, M., Amara, K., Bouazza, M. and Bourada, F. (2018), "The buckling of piezoelectric plates on Pasternak elastic foundation using higher-order shear deformation plate theories", Smart Struct. Syst., 21(1), 113-122. https://doi.org/10.12989/sss.2018.21.1.113.
  23. Fakhar, A. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by viscopiezo-GPL reinforced plates", Int. J. Mech. Sci., 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036.
  24. Forquin, P. and Hild, F. (2008), "Dynamic fragmentation of an ultra-high strength concrete during edge-on impact tests", J. Eng. Mech., 134(4), 302-315. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:4(302).
  25. Fragiacomo, M. (2005), "A finite element model for long-term analysis of timber-concrete composite beams", Struct. Eng. Mech., 20(2), 173-189. https://doi.org/10.12989/sem.2005.20.2.173.
  26. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  27. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018a), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory", Aerosp. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030.
  28. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M. (2018c), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004.
  29. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018b), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002.
  30. Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidalvisco-piezoelasticity theories", J. Sandw. Struct. Mater., 1099636217720373. https://doi.org/10.1177%2F1099636217720373.
  31. Hajmohammada, M.H., Kolahchi, R., Sharif Zarei, M., Nouri AH (2019), "Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory", Int. J. Mech. Sci., 153 391-401. https://doi.org/10.1016/j.ijmecsci.2019.02.008.
  32. Hebali, H., Bakora, A., Tounsi, A. and Kaci, A. (2016), "A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates", Steel Compos. Struct., 22(3), 473-495. https://doi.org/10.12989/scs.2016.22.3.473.
  33. Herakovich, C.T. (1998), Mechanics of Fibrous Composites, Wiley, U.S.A.
  34. Hoque, M., Rattanawangcharoen, N., Shah, A.H. and Desai, Y.M. (2007), "3D nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement", Comput. Concrete, 4(2), 135-156. http://dx.doi.org/10.12989/cac.2007.4.2.135.
  35. Hosseini, H. and Kolahchi, R. (2018), "Seismic response of functionally graded-carbon nanotubesreinforced submerged viscoelastic cylindrical shell in hygrothermal environment", Phys. E Low-Dimens. Syst. Nanostruct., 102, 101-109. https://doi.org/10.1016/j.physe.2018.04.037.
  36. Hu, J., Liang, H. and Lu, Y. (2018), "Behavior of steel-concrete jacketed corrosion-damaged RC columns subjected to eccentric load", Steel Compos. Struct., 29(6), 689-701. https://doi.org/10.12989/scs.2018.29.6.689.
  37. Huang, J., Huang, P.X. and Zheng, X. (2015), "Experimental study of prestress losses of RC beams strengthened with prestress FRP", J. Build. Struct., 36(1), 85-91.
  38. Jassas, M.R., Bidgoli, M.R. and Kolahchi R.(2019), "Forced vibration analysis of concrete slabs reinforced by agglomerated SiO2 nanoparticles based on numerical methods", Construct. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263.
  39. Kara, I.K. and Dundar, C. (2012), "Prediction of deflection of high strength steel fiber reinforced concrete beams and columns", Comput. Concrete, 9(2), 133-151. http://dx.doi.org/10.12989/cac.2012.9.2.133/
  40. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391.
  41. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  42. Kolahchi, R. and Bidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8.
  43. Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlin. Dyn., 90(1), 479-492. https://doi.org/10.1007/s11071-017-3676-x.
  44. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocalpiezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032.
  45. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2017c), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., 1099636217731071. https://doi.org/10.1177%2F1099636217731071.
  46. Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  47. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017b), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  48. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017a), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
  49. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  50. Malek, A.M., Saadatmanesh, H. and Ehsani, M.R. (1998), "Prediction of failure load of RC beams strengthened with FRP plate due to stress concentration at the plate end", ACI Struct. J., 95(1), 142-152.
  51. Moscoso, A.M., Tamayo, J.L. and Morsch, I.B. (2017), "Numerical simulation of external pre-stressed steel-concrete composite beams", Comput. Concrete, 19(2), 191-201. https://doi.org/10.12989/cac.2017.19.2.191.
  52. Narayanamurthy, V., Chen, J.F. and Cairns, J. (2010), "A general analytical method for the analysis of in terfacial stresses in plated beams under arbitrary loading", Adv. Struct. Eng., 13(5), 975-988. https://doi.org/10.1260%2F1369-4332.13.5.975. https://doi.org/10.1260/1369-4332.13.5.975
  53. Narayanamurthy, V., Chen, J.F. and Cairns, J. (2016), "Improved model for interfacial stresses accounting for the effect of shear deformation in plated beams", Int. J. Adhes. Adhes., 64, 33-47. https://doi.org/10.1016/j.ijadhadh.2015.10.001.
  54. Narayanamurthy, V., Chen, J.F., Cairns, J. and Ramaswamy, A. (2011), "Effect of shear deformationon interfacial stresses of plated beams subjected to arbitrary loading", Int. J. Adhes., Adhes., 31(8), 862-874. https://doi.org/10.1016/j.ijadhadh.2011.08.007.
  55. Oehlers, D.J., Nguyen, N.T., Ahmed, M. and Bradford, M.A. (1997), "Transverse and longitudinal partial interaction in composite bolted side-plated reinforced-concrete beams", Struct. Eng. Mech,, 5(5), 553-563. https://doi.org/10.12989/sem.1997.5.5.553.
  56. Perrella, M., Berardi, V.P. and Cricri, G. (2018), "A novel methodology for shear cohesive law identification of bonded reinforcements", Compos. Part B Eng., 144, 126-133. https://doi.org/10.1016/j.compositesb.2018.02.027.
  57. Qiao, P. and Chen, F. (2008), "An improved adhesively bonded bimaterial beam model for plated beams", Eng. Struct., 30(7), 1949-1957. https://doi.org/10.1016/j.engstruct.2007.12.017.
  58. Rad, S.S. and Bidgoli, MR (2017), "Earthquake analysis of NFRP-reinforced- concrete beams using hyperbolic shear deformation theory", Earthq. Struct., 13(3), 241-253. https://doi.org/10.12989/eas.2017.13.3.241.
  59. Roberts, T.M. (2001), "Approximate analysis of shear and normal stress concentrations in the adhesive layer of plated RC beams", J. Struct. Eng., 10(2), 229-233
  60. Roberts, T.M. and Hajikazemi, H. (1989), "Theoretical study of the behaviour of reinforced concrete beams strengthened by externally bonded steel plates", Proc. Inst. Civ. Eng., 87(2), 39-55. https://doi.org/10.1680/iicep.1989.1452.
  61. Schmit, K. (1998), Fiberglass Reinforced Plastic (FRP) Piping Systems Designing Process / Facilities Piping Systems with FRP a Comparison to Traditional Metallic Materials, Project Engineer Specialty Plastics, Inc., Baton Rouge, Los Angeles, California, U.S.A.
  62. Siu, W.H. and Su, R.K.L. (2011), "Analysis of side-plated reinforced concrete beams with partial interaction", Comput. Concrete, 8(1), 71-96. https://doi.org/10.12989/cac.2011.8.1.071.
  63. Smith, S.T. and Teng, J.G. (2001), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. https://doi.org/10.1016/S0141-0296(00)00090-0.
  64. Taljsten, B. (1997), "Strengthening of beams by plate bonding", J. Mater. Civ. Eng., 9(4), 206-212. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:4(206).
  65. Teng, J.G., Chen, J.F., Smith, S.T. and Lam, L. (2001), "FRP strengthened RC structures", Front. Phys.
  66. Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solids Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074.
  67. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
  68. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.
  69. Zarei, M.S., Kolahchi, R., Hajmohamm, M.H. and Maleki, M. (2017), "Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85. https://doi.org/10.1016/j.soildyn.2017.09.009.
  70. Zhang, F., Lu, Y., Li, S. and Zhang, W. (2018), "Eccentrically compressive behaviour of RC square short columns reinforced with a new composite method", Steel Compos. Struct., 27(1), 95-108. https://doi.org/10.12989/scs.2018.27.1.095.

피인용 문헌

  1. Development of orthotropic Winkler-like model for rotating cylindrical shell: Stability analysis vol.26, pp.3, 2019, https://doi.org/10.12989/gae.2021.26.3.253