References
- Atallah, N., Shakoor, A. and Watts, C.F. (2015), "Investigating the potential and mechanism of soil piping causing water-level drops in Mountain Lake, Giles Country, Virginia", Eng. Geol., 195, 282-291. https://doi.org/10.1016/j.enggeo.2015.06.001.
- Balendra, M.M. and Ravi, S.S. (2017), "Assessment of slope stability using multiple regression analysis", Geomech. Eng., 13(2), 237-254. https://doi.org/10.12989/gae.2017.13.2.237.
- Castiglia, M., de Magistris, F.S. and Napolitano, A. (2018), "Stability of onshore pipelines in liquefied soils: Overview of computational methods", Geomech. Eng., 14(4), 355-366. http://doi.org/10.12989/gae.2018.14.4.355.
- Chang, D.S. and Zhang, L.M. (2013). "Extended internal stability criteria for soils under seepage." Soils Found., 53(4), 569-583. https://doi.org/10.1016/j.sandf.2013.06.008.
- Cristianini, N., Kandola, J., Elisseeff, A. and Shawe-Taylor, J. (2006), On Kernel Target Alignment, in Innovations in Machine Learning: Theory and Applications, Springer, 205-256.
- Dibike, Y.B., Velickov, S., Solomatine, D.P. and Abbott, M. (2001), "Model induction with support vector machines: Introduction and applications", J. Comput. Civ. Eng., 15(3), 208. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208).
- Fell, R., MacGregor, P., Stapledon, D. and Bell, G. (2005), Geotechnical Engineering of Dams, Balkema, Leiden, The Netherlands.
- Foster, M. and Fell, R. (1999), "A framework for estimating the probability of failure of embankment dams by internal erosion and piping using event tree methods", UNICIV R-377, University of New South Wales, Australia.
- Foster, M., Fell, R. and Spannagle, M. (2000), "The statistics of embankment dam failures and accidents", Can. Geotech. J., 37(5), 1000-1024. https://doi.org/10.1139/t00-030.
- Garner, S.J. and Fannin, R.J. (2010), "Understanding internal erosion: a decade of research following a sinkhole event", Int. J. Hydropower Dams, 17(3), 93-98.
- Huang, C.L. and Dun, J.F. (2008), "A distributed PSO-SVM hybrid system with feature selection and parameter optimization", Appl. Soft Comput., 8(4), 1381-1391. https://doi.org/10.1016/j.asoc.2007.10.007.
- Huang, C.L. and Wang, C.J. (2006), "A GA-based feature selection and parameters optimization for support vector machines", Expert Syst. Appl., 31(2), 231-240. https://doi.org/10.1016/j.eswa.2005.09.024.
- Kaveh, A., Hamze-Ziabari, S.M. and Bakhshpoori, T. (2018), "Soft computing-based slope stability assessment: A comparative study", Geomech. Eng., 14(3), 257-269. http://doi.org/10.12989/gae.2018.14.3.257.
- Lau, K.W. and Wu, Q.H. (2008), "Local prediction of non-linear time series using support vector regression", Pattern Recogn., 41(5), 1539-1547. https://doi.org/10.1016/j.patcog.2007.08.013.
- Lee, C.Y. and Chern S.G. (2013), "Application of a support vector machine for liquefaction assessment", J. Mar. Sci. Technol., 21(3), 318-324. https://doi.org/10.6119/JMST-012-0518-3.
- Lee, Y. and Lee, C. (2003), "Classification of multiple cancer types by multicategory support vector machines using gene expression data", Bioinformatics, 19, 1132-1139. https://doi.org/10.1093/bioinformatics/btg102.
- Maalouf, M., Khoury, N. and Trafalis, T.B. (2008), "Support vector regression to predict asphalt mix performance", Int. J. Numer. Anal. Meth. Geomech., 32(16), 1989-1996. https://doi.org/10.1002/nag.718.
- Osowski, S. and Garanty, K. (2007), "Forecasting of the daily meteorological pollution using wavelets and support vector machine", Eng. Appl. Artif. Intel., 20(6), 745-755. https://doi.org/10.1016/j.engappai.2006.10.008.
- Pham-Van, S., Hinkelmann, R., Nehrig, M. and Martinez, I. (2011), "A comparison of model concepts and experiments for seepage processes through a dike with a fault zone", Eng. Appl. Comput. Fluid Mech., 5(1), 149-158. https://doi.org/10.1080/19942060.2011.11015359.
- Rao, S.S. (2009), Engineering Optimization: Theory and Practice, John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A.
- Shin, K.S., Lee, T.S. and Kim, H.J. (2005), "An application of support vector machines in bankruptcy prediction model", Expert Syst. Appl., 28(1), 127-135. https://doi.org/10.1016/j.eswa.2004.08.009.
- Suykens, J.A.K., Vandewalle, J. and de Moor, B. (2001), "Optimal control by least squares support vector machines", Neural Networks, 14(1), 23-35. https://doi.org/10.1016/S0893-6080(00)00077-0.
- Vladimir, N. and Vapnik, V. (2000), The Nature of Statistical Learning Theory, Springer Verlag, New York, U.S.A.
- Wang, T.Y. and Chiang, H.M. (2007), "Fuzzy support vector machine for multi-class text categorization", Inform. Process. Manage., 43(4), 914-929. https://doi.org/10.1016/j.ipm.2006.09.011.
- Wei, G. and He, T.Y. (2017), "Displacement prediction in geotechnical engineering based on evolutionary neural network", Geomech. Eng., 13(5), 845-860. http://doi.org/10.12989/gae.2017.13.5.845.
- Xu, J.C., Ren, Q.W. and Shen, Z.Z. (2017), "Sensitivity analysis of the influencing factors of slope stability based on LS-SVM", Geomech. Eng., 13(3), 447-458. http://doi.org/10.12989/gae.2017.13.4.447.
- Zhang, L.M., Xu, Y. and Jia, J.S. (2009), "Analysis of earth dam failures-A database approach", Georisk, 3(3), 184-189. https://doi.org/10.1080/17499510902831759.
- Zhang, W.G. and Goh, A.T.C. (2016), "Evaluating seismic liquefaction potential using multivariate adaptive regression spines and logistic regression", Geomech. Eng., 10(3), 269-284. http://doi.org/10.12989/gae.2016.10.3.269.
- Zhang, W.H., Yu, G.S. and Cai, Y.Q. (2004), "Mechanism model and artificial intelligence method for prediction and judgment of piping occurring in embankment", J. Zhejiang Univ. Eng. Sci., 38(7), 902-908. (in Chinese).
- Zhao, Z.X., Chen, J.S. and Chen L. (2008), "Application of BP neural network to assessment of noncohesive piping-typed soils", Chin. J. Geotech. Eng., 30(4), 536-540. (in Chinese). https://doi.org/10.3321/j.issn:1000-4548.2008.04.012
Cited by
- Seismic fragility analysis of high concrete faced rockfill dams based on plastic failure with support vector machine vol.144, 2019, https://doi.org/10.1016/j.soildyn.2021.106587