DOI QR코드

DOI QR Code

Functional annotation of de novo variants from healthy individuals

  • Lee, Jean (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Hong, Sung Eun (Department of Biomedical Sciences, Seoul National University College of Medicine)
  • Received : 2019.11.19
  • Accepted : 2019.12.05
  • Published : 2019.12.31

Abstract

The implications of germline de novo variants (DNVs) in diseases are well documented. Despite extensive research, inconsistencies between studies remain a challenge, and the distribution and genetic characteristics of DNVs need to be precisely evaluated. To address this issue at the whole-genome scale, a large number of DNVs identified from the whole-genome sequencing of 1,902 healthy trios (i.e., parents and progeny) from the Simons Foundation for Autism Research Initiative study and 20 healthy Korean trios were analyzed. These apparently nonpathogenic DNVs were enriched in functional elements of the genome but relatively depleted in regions of common copy number variants, implying their potential function as triggers of evolution even in healthy groups. No strong mutational hotspots were identified. The pathogenicity of the DNVs was not strongly elevated, reflecting the health status of the cohort. The mutational signatures were consistent with previous studies. This study will serve as a reference for future DNV studies.

Keywords

References

  1. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 2005;15:1034-1050. https://doi.org/10.1101/gr.3715005
  2. Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K, et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med 2011;365:611-619. https://doi.org/10.1056/NEJMoa1104017
  3. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010;42:790-793. https://doi.org/10.1038/ng.646
  4. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in children on the autistic spectrum. Neuron 2012;74:285-299. https://doi.org/10.1016/j.neuron.2012.04.009
  5. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 2013;498:220-223. https://doi.org/10.1038/nature12141
  6. Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet 2012;13:565-575. https://doi.org/10.1038/nrg3241
  7. Smith TCA, Arndt PF, Eyre-Walker A. Large scale variation in the rate of germ-line de novo mutation, base composition, divergence and diversity in humans. PLoS Genet 2018;14:e1007254. https://doi.org/10.1371/journal.pgen.1007254
  8. Acuna-Hidalgo R, Veltman JA, Hoischen A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol 2016;17:241. https://doi.org/10.1186/s13059-016-1110-1
  9. Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 2013;155:997-1007. https://doi.org/10.1016/j.cell.2013.10.020
  10. Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I, Manavalan P, et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc Natl Acad Sci U S A 2014;111:E4468-E4477. https://doi.org/10.1073/pnas.1405266111
  11. Cotney J, Muhle RA, Sanders SJ, Liu L, Willsey AJ, Niu W, et al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat Commun 2015;6:6404. https://doi.org/10.1038/ncomms7404
  12. An JY, Lin K, Zhu L, Werling DM, Dong S, Brand H, et al. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science 2018;362:eaat6576. https://doi.org/10.1126/science.aat6576
  13. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biol 2016;17:122. https://doi.org/10.1186/s13059-016-0974-4
  14. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. Cold Spring Harbor: bioRXiv, Cold Spring Harbor Laboratory, 2019. Accessed 2018 Sep 10. Available from: https://doi.org/10.1101/531210.
  15. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 2019;47:D941-D947. https://doi.org/10.1093/nar/gky1015
  16. Diaz-Gay M, Vila-Casadesus M, Franch-Exposito S, Hernandez-Illan E, Lozano JJ, Castellvi-Bel S. Mutational Signatures in Cancer (MuSiCa): a web application to implement mutational signatures analysis in cancer samples. BMC Bioinformatics 2018;19:224. https://doi.org/10.1186/s12859-018-2234-y
  17. Gel B, Serra E. karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 2017;33:3088-3090. https://doi.org/10.1093/bioinformatics/btx346
  18. Heger A, Webber C, Goodson M, Ponting CP, Lunter G. GAT: a simulation framework for testing the association of genomic intervals. Bioinformatics 2013;29:2046-2048. https://doi.org/10.1093/bioinformatics/btt343
  19. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res 2004;32:D493-D496. https://doi.org/10.1093/nar/gkh103
  20. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 2019;47:D766-D773. https://doi.org/10.1093/nar/gky955
  21. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 2018;46:D1062-D1067. https://doi.org/10.1093/nar/gkx1153
  22. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 2019;47:D886-D894. https://doi.org/10.1093/nar/gky1016
  23. Francis WR, Worheide G. Similar ratios of introns to intergenic sequence across animal genomes. Genome Biol Evol 2017;9:1582-1598. https://doi.org/10.1093/gbe/evx103
  24. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011;43:491-498. https://doi.org/10.1038/ng.806
  25. Li M, Chen SS. The tendency to recreate ancestral CG dinucleotides in the human genome. BMC Evol Biol 2011;11:3. https://doi.org/10.1186/1471-2148-11-3
  26. Halder B, Malakar AK, Chakraborty S. Nucleotide composition determines the role of translational efficiency in human genes. Bioinformation 2017;13:46-53. https://doi.org/10.6026/97320630013046
  27. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, et al. Mutational processes molding the genomes of 21 breast cancers. Cell 2012;149:979-993. https://doi.org/10.1016/j.cell.2012.04.024
  28. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature 2013;500:415-421. https://doi.org/10.1038/nature12477
  29. Rahbari R, Wuster A, Lindsay SJ, Hardwick RJ, Alexandrov LB, Turki SA, et al. Timing, rates and spectra of human germline mutation. Nat Genet 2016;48:126-133. https://doi.org/10.1038/ng.3469
  30. Domanska D, Vodak D, Lund-Andersen C, Salvatore S, Hovig E, Sandve GK. The rainfall plot: its motivation, characteristics and pitfalls. BMC Bioinformatics 2017;18:264. https://doi.org/10.1186/s12859-017-1679-8
  31. Nykamp K, Anderson M, Powers M, Garcia J, Herrera B, Ho YY, et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med 2017;19:1105-1117. https://doi.org/10.1038/gim.2017.37
  32. Milone M, Shen XM, Selcen D, Ohno K, Brengman J, Iannaccone ST, et al. Myasthenic syndrome due to defects in rapsyn: clinical and molecular findings in 39 patients. Neurology 2009;73:228-235. https://doi.org/10.1212/WNL.0b013e3181ae7cbc
  33. Maselli R, Dris H, Schnier J, Cockrell J, Wollmann R. Congenital myasthenic syndrome caused by two non-N88K rapsyn mutations. Clin Genet 2007;72:63-65. https://doi.org/10.1111/j.1399-0004.2007.00824.x