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Artificial intelligence (AI), big data, and ubiquitous robotic companions —the three most 
notable technologies of the 4th Industrial Revolution—are receiving renewed attention 
each day. Technologies that can be experienced in daily life, such as autonomous naviga-
tion, real-time translators, and voice recognition services, are already being commercialized 
in the field of information technology. In the biosciences field in Korea, such technologies 
have become known to the local public with the introduction of the AI doctor Watson in 
large number of hospitals. Additionally, AlphaFold, a technology resembling the AI AlphaGo 
for the game Go, has surpassed the limit on protein folding predictions—the most chal-
lenging problems in the field of protein biology. This report discusses the significance of AI 
technology and big data on the bioscience field. The introduction of automated robots in 
this field is not just only for the purpose of convenience but a prerequisite for the real 
sense of AI and the consequent accumulation of basic scientific knowledge. 
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Historically, artificial intelligence (AI), which is represented by deep learning, is closely 
related to biology. To be more precise, the relationship is between statistics and genetics. 
The prominent statisticians Karl Pearson, William S. Gosset, and Ronald A. Fisher, who 
created the most well-known statistical theories, such as correlation coefficient, T-test, 
and probability distribution, were working as a biology professor, a biologist at a brewery, 
and a biologist at an agricultural test field, respectively. Notably, the famous pea breeding 
experiment of Gregor Johann Mendel provided crucial data for the development of the 
statistical theories by Pearson and Fischer. Mendel discovered the Laws of Heredity, by 
which the genetic factors of pea plants are passed on to the offspring according to a cer-
tain set of rules to determine the offspring’s trait. All the studies by Mendel, Pearson, and 
Fischer are equivalent to statistical models that describe the relationship between the ge-
netic factors and the observed traits. The term “error” in statistical models enables ex-
plaining the relationship between the two factors with a simple equation, even when their 
complex mechanical relationship is unknown. In fact, to build an exact mechanistic mod-
el of the hereditary DNA and its effect on the generation of yellow peas was not possible 
based on the existing knowledge. Every cell holds over millions of proteins and an even 
larger number of metabolites. Interactions between these molecules determine a trait, 
such as that in yellow peas. The statistical models studied by Pearson and Fischer in-
volved only simple arithmetic operations among the observed trait probabilities; howev-
er, their genetic theories were adequately proven and accepted as general law of heredi-
tary. Thus, a good statistical model focuses on having the least errors rather than explain-
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ing the exact mechanical relations of the observed phenomenon, 
and the ‘error’ in a statistical model is essential for the unknown 
and complex biological phenomenon.  

The fundamental principle of the statistical models applies 
equally to AI (deep-learning) models. Initiated by Marvin Lee 
Minsky at the Dartmouth Conference, 1965, AI began to attract 
significant attention [1]. Since then, AI has undergone a steady 
progress in its development, with alternating periods of dark ages 
and revival. Nonetheless, ever since the presentation of applied 
cases in 2016, AI has become a representative keyword of the pres-
ent era facing the 4th Industrial Revolution. There are two main 
reasons why the AI theory, developed before the 1960s, has gained 
attention recently. One is the improvement in computing perfor-
mance with software and hardware related to parallel computation 
using GPUs or multi CPUs. The other is big data on image, text, or 
voice as a result of internet and personal device development. At 
present, the fields in which high-level deep-learning technology is 
available are limited to those that utilize image, video, voice, and 
text data. For example, the Open Image Dataset [2] provided by 
Google comprises approximately 15 million images and 600 cate-
gories (labels). The WMT14 dataset [3] that used to be applied in 
Google Translator consisted of 6 million sentences and 340 mil-
lion words. High performance AI is limited to these types of data-
sets, because they are relatively easy to collect and label. For in-
stance, in 2011 the accuracy of facial image recognition was ap-
proximately 75%, which was inferior compared with 97.53% accu-
racy of the human ability to recognize faces. However, approxi-
mately three years later, an accuracy of 97.35% was achieved by 
Facebook. In 2011, Facebook launched a tag suggestion service 
that looked for friends in photo images, whereby facial data were 
collected. With this service, one could simply click on a tag sug-
gested on the face of a friend in a photo to get a set of photo data 
carrying a label of the friend’s name. For AI learning, such labeled 
data are essential, and Facebook used their web service visiting ap-
proximately 1.5 billion users per day to collect labeled large-scale 
facial photo data. 

Compared with the image or text datasets, biological data are 
much more complex and multidimensional, with a high level of 
noise. Thus, an AI model is more appropriate than a simple statis-
tical model for biological datasets. Generally, the main objective of 
biological research is to uncover the genetic factors that affect a 
specific trait. In terms of AI model, phenotype labeled genotype 
data are required but it is never easy to collect more than hundreds 
of thousands of labeled genotype data like the case of images or 
texts. A relatively easier way to collect labeled genotype data is to 
sequence the DNA of a sample with a definite phenotype, such as 
a disease. The recent advancement of next-generation sequencing 

(NGS) technology has allowed the systematic collection of labeled 
data based on phenotype. The most recent example is the EU 
project that is collecting genomic data of a million patients with 
cancer, infectious or rare diseases [4]. Fortunately, in the health-
care sector, large-scale investments, predicated on a mutual agree-
ment on the importance of biological data, are underway. Howev-
er, of the approximately one trillion or more species of other bio-
logical organisms (especially microorganisms) that have been pre-
dicted to inhabit the Earth, 99% are yet to be identified. Although 
NGS technology would allow rapid genomic sequencing, the pro-
cesses of annotating the decoded sequences require high cost in-
vestments and increased specialist involvement. Without the im-
provement of the time-consuming and specialist-dependent pro-
cesses of experiments for the function determination and categori-
zation of DNA sequences, the current level of AI models would 
come to a standstill. 

Such problems were recognized by groups researching advanced 
synthetic biology in the United States and Europe, who went on to 
apply automated robots to carry out the repetitive and time-con-
suming biological experiments and to develop software for the in-
tegrated management of the complex biological data. This is one 
of the revolutionary breakthroughs in the production of biological 
datasets. Notably, the ways of creating a desired genotype—built 
using DNA components through technology based on synthetic 
biology—and testing the resulting phenotype using automated ro-
bots have led to the unparalleled rapid production of labeled data. 
Amyris, an American company that specializes in synthetic biolo-
gy, applied a method to produce new bacterial strains (with differ-
ent genotypes) every three minutes and succeeded in commercial-
izing 15 products through the course of seven years. Another syn-
thetic biology startup company, Ginkgo Bioworks, attracted a total 
of 1 billion US dollars from investors for robot-assisted strain de-
sign technology in 2017. In addition, companies such as Zymergen 
and Counsyl are rapidly producing biological data via automated 
robots and refining the strains and proteins through deep learning, 
whereas companies like Transcriptic and Riffyn are developing a 
platform technology that will allow the rapid production and anal-
ysis of large quantities of highly complex biological data through 
the design of cloud-based synthetic biology software. While such 
private companies in the United States are rapidly developing in-
novative tools for biotechnology with plentiful capital and man-
power, universities and research institutions in developed coun-
tries have been establishing Biofoundries with support from the 
respective Governments. For instance, a Biofoundry known as the 
Global Biofoundries Alliance, has been formed from 16 institu-
tions from seven nations, for information sharing and the rapid de-
velopment of automation-based synthetic biology technology [5]. 
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The two fields, biology and statistics, naturally resemble each 
other. Most biological phenomena arise from the probabili-
ty-based interactions among myriads of molecules, which can be 
explained through the statistical concepts of ‘probability’ and ‘er-
ror’. In other words, the procedure of getting a result through sta-
tistical inference is similar with that of phenotypic expression of a 
complex biological system in the point of allowing errors and sto-
chasticity. Nonetheless, one of the reasons why AI models have 
not yet exerted a significant influence in the bioscience field is the 
lack of a sufficient scale of labeled data with low-speed data pro-
duction. However, the developments of automated robots and 
software have enabled precise and rapid performances in the re-
petitive and time-consuming processes of biological experiments, 
implying the potential for large-scale labeled genomic data being 
established in the future. What seems clear is that, thanks to the 
development of sequencing technology and automated robots, the 
speed of biological data production has been reduced from ten or 
more years to within several days, and the future advancements in 
information technology will further enhance the speed. The im-
provement in AI models, in line with the accumulation of large-
scale data, implies a preoccupancy of basic knowledge and intellec-
tual property with respect to the field of life science with its com-
plex and massive uncharted territories. The first artificial microor-
ganism created by the J. Craig Venter Institute [6] and the artificial 
yeast synthesis project [7], which have excited the media into re-
ferring to them as the “realm of the God,” were the results of high-
speed DNA synthesis technology based on automated robots. The 
relevant research groups have already acquired basic scientific 
knowledge of biological phenomena and set out toward research, 
where such knowledge is applied. The current AI algorithms and 
platform information technologies are mostly open-source based, 
which means anyone can easily apply the AI algorithms. Now, it 
might be possible to narrow the gap rapidly for the scientific tech-
nology of developed countries simply by collecting high-quality 
labeled data on a large-scale with a help of automated robots. 
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