DOI QR코드

DOI QR Code

DNA methylation: a cause and consequence of type 2 diabetes

  • Kim, Mirang (Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2019.09.09
  • Accepted : 2019.10.25
  • Published : 2019.12.31

Abstract

DNA methylation is a relatively stable epigenetic modification that can regulate and stabilize gene expression patterns and hence establish cell identity. Because metabolic intermediates are key factors of DNA methylation and demethylation, perturbations in metabolic homeostasis can trigger alterations in cell-specific patterns of DNA methylation and contribute to disease development, including type 2 diabetes (T2D). During the past decade, genome-wide DNA methylation studies of T2D have expanded our knowledge of the molecular mechanisms underlying T2D. This review summarizes case-control studies of the DNA methylome of T2D and discusses DNA methylation as both a cause and consequence of T2D. Therefore, DNA methylation has potential as a promising T2D biomarker that can be applied to the development of therapeutic strategies for T2D.

Keywords

References

  1. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018;138:271-281. https://doi.org/10.1016/j.diabres.2018.02.023
  2. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010;42:579-589. https://doi.org/10.1038/ng.609
  3. McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med 2010;363:2339-2350. https://doi.org/10.1056/NEJMra0906948
  4. Prasad RB, Groop L. Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel) 2015;6:87-123. https://doi.org/10.3390/genes6010087
  5. Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 2010;6:665-675. https://doi.org/10.1038/nrendo.2010.188
  6. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008;9:465-476. https://doi.org/10.1038/nrg2341
  7. Du Q, Luu PL, Stirzaker C, Clark SJ. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 2015;7:1051-1073. https://doi.org/10.2217/epi.15.39
  8. Kim M, Costello J. DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med 2017;49:e322. https://doi.org/10.1038/emm.2017.10
  9. Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol 2016;17:208. https://doi.org/10.1186/s13059-016-1066-1
  10. Geach T. Obesity: methylation a consequence not a cause. Nat Rev Endocrinol 2017;13:127. https://doi.org/10.1038/nrendo.2016.223
  11. Ulrey CL, Liu L, Andrews LG, Tollefsbol TO. The impact of metabolism on DNA methylation. Hum Mol Genet 2005;14 Spec No 1:R139-47. https://doi.org/10.1093/hmg/ddi100
  12. Zhang N. Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. Anim Nutr 2015;1:144-151. https://doi.org/10.1016/j.aninu.2015.09.002
  13. Wainfan E, Dizik M, Stender M, Christman JK. Rapid appearance of hypomethylated DNA in livers of rats fed cancer-promoting, methyl-deficient diets. Cancer Res 1989;49:4094-4097.
  14. Bhave MR, Wilson MJ, Poirier LA. c-H-ras and c-K-ras gene hypomethylation in the livers and hepatomas of rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis 1988;9:343-348. https://doi.org/10.1093/carcin/9.3.343
  15. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009;324:930-935. https://doi.org/10.1126/science.1170116
  16. Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of ${\alpha}$-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 2012;26:1326-1338. https://doi.org/10.1101/gad.191056.112
  17. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115:1111-1119. https://doi.org/10.1172/JCI25102
  18. Wang X, Zhu H, Snieder H, Su S, Munn D, Harshfield G, et al. Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med 2010;8:87. https://doi.org/10.1186/1741-7015-8-87
  19. Yang X, Wang X, Liu D, Yu L, Xue B, Shi H. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol Endocrinol 2014;28:565-574. https://doi.org/10.1210/me.2013-1293
  20. Raghuraman S, Donkin I, Versteyhe S, Barres R, Simar D. The emerging role of epigenetics in inflammation and immunometabolism. Trends Endocrinol Metab 2016;27:782-795. https://doi.org/10.1016/j.tem.2016.06.008
  21. Gallou-Kabani C, Junien C. Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes 2005;54:1899-1906. https://doi.org/10.2337/diabetes.54.7.1899
  22. Ling C, Ronn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab 2019;29:1028-1044. https://doi.org/10.1016/j.cmet.2019.03.009
  23. Davegardh C, Garcia-Calzon S, Bacos K, Ling C. DNA methylation in the pathogenesis of type 2 diabetes in humans. Mol Metab 2018;14:12-25. https://doi.org/10.1016/j.molmet.2018.01.022
  24. Zhou Z, Sun B, Li X, Zhu C. DNA methylation landscapes in the pathogenesis of type 2 diabetes mellitus. Nutr Metab (Lond) 2018;15:47. https://doi.org/10.1186/s12986-018-0283-x
  25. Kasuga M. Insulin resistance and pancreatic beta cell failure. J Clin Invest 2006;116:1756-1760. https://doi.org/10.1172/JCI29189
  26. Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M, Deplus R, et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J 2012;31:1405-1426. https://doi.org/10.1038/emboj.2011.503
  27. Dayeh T, Volkov P, Salo S, Hall E, Nilsson E, Olsson AH, et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 2014;10:e1004160. https://doi.org/10.1371/journal.pgen.1004160
  28. Olsson AH, Volkov P, Bacos K, Dayeh T, Hall E, Nilsson EA, et al. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet 2014;10:e1004735. https://doi.org/10.1371/journal.pgen.1004735
  29. Eriksson JW, Smith U, Waagstein F, Wysocki M, Jansson PA. Glucose turnover and adipose tissue lipolysis are insulin-resistant in healthy relatives of type 2 diabetes patients: is cellular insulin resistance a secondary phenomenon? Diabetes 1999;48:1572-1578. https://doi.org/10.2337/diabetes.48.8.1572
  30. Hardy OT, Czech MP, Corvera S. What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes 2012;19:81-87. https://doi.org/10.1097/MED.0b013e3283514e13
  31. Ribel-Madsen R, Fraga MF, Jacobsen S, Bork-Jensen J, Lara E, Calvanese V, et al. Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One 2012;7:e51302. https://doi.org/10.1371/journal.pone.0051302
  32. You D, Nilsson E, Tenen DE, Lyubetskaya A, Lo JC, Jiang R, et al. Dnmt3a is an epigenetic mediator of adipose insulin resistance. Elife 2017;6:e30766. https://doi.org/10.7554/elife.30766
  33. Nilsson E, Matte A, Perfilyev A, de Mello VD, Kakela P, Pihlajamaki J, et al. Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J Clin Endocrinol Metab 2015;100:E1491-E1501. https://doi.org/10.1210/jc.2015-3204
  34. Kirchner H, Sinha I, Gao H, Ruby MA, Schonke M, Lindvall JM, et al. Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol Metab 2016;5:171-183. https://doi.org/10.1016/j.molmet.2015.12.004
  35. Garcia-Calzon S, Perfilyev A, Mannisto V, de Mello VD, Nilsson E, Pihlajamaki J, et al. Diabetes medication associates with DNA methylation of metformin transporter genes in the human liver. Clin Epigenetics 2017;9:102. https://doi.org/10.1186/s13148-017-0400-0
  36. Abderrahmani A, Yengo L, Caiazzo R, Canouil M, Cauchi S, Raverdy V, et al. Increased hepatic PDGF-AA signaling mediates liver insulin resistance in obesity-associated type 2 diabetes. Diabetes 2018;67:1310-1321. https://doi.org/10.2337/db17-1539
  37. Eriksson J, Franssila-Kallunki A, Ekstrand A, Saloranta C, Widen E, Schalin C, et al. Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Engl J Med 1989;321:337-343. https://doi.org/10.1056/NEJM198908103210601
  38. Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep 2013;3:1020-1027. https://doi.org/10.1016/j.celrep.2013.03.018
  39. Barres R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 2009;10:189-198. https://doi.org/10.1016/j.cmet.2009.07.011
  40. Alibegovic AC, Sonne MP, Hojbjerre L, Bork-Jensen J, Jacobsen S, Nilsson E, et al. Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am J Physiol Endocrinol Metab 2010;299:E752-E763. https://doi.org/10.1152/ajpendo.00590.2009
  41. Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 2012;61:3322-3332. https://doi.org/10.2337/db11-1653
  42. Mudry JM, Lassiter DG, Nylen C, Garcia-Calzon S, Naslund E, Krook A, et al. Insulin and glucose alter Death-Associated Protein Kinase 3 (DAPK3) DNA methylation in human skeletal muscle. Diabetes 2017;66:651-662. https://doi.org/10.2337/db16-0882
  43. Jung M, Pfeifer GP. Aging and DNA methylation. BMC Biol 2015;13:7. https://doi.org/10.1186/s12915-015-0118-4
  44. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013;14:R115. https://doi.org/10.1186/gb-2013-14-10-r115
  45. Bacos K, Gillberg L, Volkov P, Olsson AH, Hansen T, Pedersen O, et al. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun 2016;7:11089. https://doi.org/10.1038/ncomms11089
  46. Chang AM, Halter JB. Aging and insulin secretion. Am J Physiol Endocrinol Metab 2003;284:E7-E12. https://doi.org/10.1152/ajpendo.00366.2002
  47. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 2018;10:573-591. https://doi.org/10.18632/aging.101414
  48. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell 2014;159:709-713. https://doi.org/10.1016/j.cell.2014.10.039
  49. Vojta A, Dobrinic P, Tadic V, Bockor L, Korac P, Julg B, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 2016;44:5615-5628. https://doi.org/10.1093/nar/gkw159
  50. Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 2016;7:46545-46556. https://doi.org/10.18632/oncotarget.10234