References
- Efremova M, Finotello F, Rieder D, Trajanoski Z. Neoantigens generated by individual mutations and their role in cancer immunity and immunotherapy. Front Immunol 2017;8:1679. https://doi.org/10.3389/fimmu.2017.01679
- Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 2019;51:202-206. https://doi.org/10.1038/s41588-018-0312-8
- Lee CH, Yelensky R, Jooss K, Chan TA. Update on tumor neoantigens and their utility: why it is good to be different. Trends Immunol 2018;39:536-548. https://doi.org/10.1016/j.it.2018.04.005
- Tan MH, Li Q, Shanmugam R, Piskol R, Kohler J, Young AN, et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 2017;550:249-254. https://doi.org/10.1038/nature24041
- Saha A, Kim Y, Gewirtz ADH, Jo B, Gao C, McDowell IC, et al. Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res 2017;27:1843-1858. https://doi.org/10.1101/gr.216721.116
- Zhang M, Fritsche J, Roszik J, Williams LJ, Peng X, Chiu Y, et al. RNA editing derived epitopes function as cancer antigens to elicit immune responses. Nat Commun 2018;9:3919. https://doi.org/10.1038/s41467-018-06405-9
- Kahles A, Lehmann KV, Toussaint NC, Huser M, Stark SG, Sachsenberg T, et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 2018;34:211-224. https://doi.org/10.1016/j.ccell.2018.07.001
- Slansky JE, Spellman PT. Alternative splicing in tumors: a path to immunogenicity? N Engl J Med 2019;380:877-880. https://doi.org/10.1056/NEJMcibr1814237
- Ben-Aroya S, Levanon EY. A-to-I RNA editing: an overlooked source of cancer mutations. Cancer Cell 2018;33:789-790. https://doi.org/10.1016/j.ccell.2018.04.006
- Poulos MG, Batra R, Charizanis K, Swanson MS. Developments in RNA splicing and disease. Cold Spring Harb Perspect Biol 2011;3:a000778. https://doi.org/10.1101/cshperspect.a000778
- Braunschweig U, Barbosa-Morais NL, Pan Q, Nachman EN, Alipanahi B, Gonatopoulos-Pournatzis T, et al. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res 2014;24:1774-1786. https://doi.org/10.1101/gr.177790.114
- Vitting-Seerup K, Sandelin A. The landscape of isoform switches in human cancers. Mol Cancer Res 2017;15:1206-1220. https://doi.org/10.1158/1541-7786.MCR-16-0459
- Climente-Gonzalez H, Porta-Pardo E, Godzik A, Eyras E. The functional impact of alternative splicing in cancer. Cell Rep 2017;20:2215-2226. https://doi.org/10.1016/j.celrep.2017.08.012
- Liu Y, Gonzalez-Porta M, Santos S, Brazma A, Marioni JC, Aebersold R, et al. Impact of alternative splicing on the human proteome. Cell Rep 2017;20:1229-1241. https://doi.org/10.1016/j.celrep.2017.07.025
- Yang X, Coulombe-Huntington J, Kang S, Sheynkman GM, Hao T, Richardson A, et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 2016;164:805-817. https://doi.org/10.1016/j.cell.2016.01.029
- Carazo F, Romero JP, Rubio A. Upstream analysis of alternative splicing: a review of computational approaches to predict context-dependent splicing factors. Brief Bioinform 2018 Jan 29 [Epub]. https://doi.org/10.1093/bib/bby005.
- Singh B, Eyras E. The role of alternative splicing in cancer. Transcription 2017;8:91-98. https://doi.org/10.1080/21541264.2016.1268245
- Kozlovski I, Siegfried Z, Amar-Schwartz A, Karni R. The role of RNA alternative splicing in regulating cancer metabolism. Hum Genet 2017;136:1113-1127. https://doi.org/10.1007/s00439-017-1803-x
- Sveen A, Kilpinen S, Ruusulehto A, Lothe RA, Skotheim RI. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 2016;35:2413-2427. https://doi.org/10.1038/onc.2015.318
- Jayasinghe RG, Cao S, Gao Q, Wendl MC, Vo NS, Reynolds SM, et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep 2018;23:270-281. https://doi.org/10.1016/j.celrep.2018.03.052
- Shiraishi Y, Kataoka K, Chiba K, Okada A, Kogure Y, Tanaka H, et al. A comprehensive characterization of cis-acting splicing-associated variants in human cancer. Genome Res 2018;28:1111-1125. https://doi.org/10.1101/gr.231951.117
- Park E, Pan Z, Zhang Z, Lin L, Xing Y. The expanding landscape of alternative splicing variation in human populations. Am J Hum Genet 2018;102:11-26. https://doi.org/10.1016/j.ajhg.2017.11.002
- Tian J, Wang Z, Mei S, Yang N, Yang Y, Ke J, et al. CancerSplicingQTL: a database for genome-wide identification of splicing QTLs in human cancer. Nucleic Acids Res 2019;47:D909-D916. https://doi.org/10.1093/nar/gky954
- Seiler M, Peng S, Agrawal AA, Palacino J, Teng T, Zhu P, et al. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep 2018;23:282-296. https://doi.org/10.1016/j.celrep.2018.01.088
- Kahles A, Ong CS, Zhong Y, Ratsch G. SplAdder: identification, quantification and testing of alternative splicing events from RNA-Seq data. Bioinformatics 2016;32:1840-1847. https://doi.org/10.1093/bioinformatics/btw076
- Smart AC, Margolis CA, Pimentel H, He MX, Miao D, Adeegbe D, et al. Intron retention is a source of neoepitopes in cancer. Nat Biotechnol 2018;36:1056-1058. https://doi.org/10.1038/nbt.4239
- Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S, Mason CE. The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biol 2012;13:175. https://doi.org/10.1186/gb-2012-13-10-175
- Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 2016;17:83-96. https://doi.org/10.1038/nrm.2015.4
- Hsiao YE, Bahn JH, Yang Y, Lin X, Tran S, Yang EW, et al. RNA editing in nascent RNA affects pre-mRNA splicing. Genome Res 2018;28:812-823. https://doi.org/10.1101/gr.231209.117
- Laurencikiene J, Kallman AM, Fong N, Bentley DL, Ohman M. RNA editing and alternative splicing: the importance of co-transcriptional coordination. EMBO Rep 2006;7:303-307. https://doi.org/10.1038/sj.embor.7400621
- Ramaswami G, Li JB. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res 2014;42:D109-D113. https://doi.org/10.1093/nar/gkt996
- Picardi E, D'Erchia AM, Lo Giudice C, Pesole G. REDIportal: a comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res 2017;45:D750-D757. https://doi.org/10.1093/nar/gkw767
- Li X, Xiong X, Yi C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods 2016;14:23-31. https://doi.org/10.1038/nmeth.4110
- Gatsiou A, Vlachogiannis N, Lunella FF, Sachse M, Stellos K. Adenosine-to-inosine RNA editing in health and disease. Antioxid Redox Signal 2018;29:846-863. https://doi.org/10.1089/ars.2017.7295
- Xu X, Wang Y, Liang H. The role of A-to-I RNA editing in cancer development. Curr Opin Genet Dev 2018;48:51-56. https://doi.org/10.1016/j.gde.2017.10.009
- Peng X, Xu X, Wang Y, Hawke DH, Yu S, Han L, et al. A-to-I RNA editing contributes to proteomic diversity in cancer. Cancer Cell 2018;33:817-828. https://doi.org/10.1016/j.ccell.2018.03.026
- Roth SH, Danan-Gotthold M, Ben-Izhak M, Rechavi G, Cohen CJ, Louzoun Y, et al. Increased RNA editing may provide a source for autoantigens in systemic lupus erythematosus. Cell Rep 2018;23:50-57. https://doi.org/10.1016/j.celrep.2018.03.036
- Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER, et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med 2016;8:11. https://doi.org/10.1186/s13073-016-0264-5
- Kim S, Kim HS, Kim E, Lee MG, Shin EC, Paik S, et al. Neopepsee: accurate genome-level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information. Ann Oncol 2018;29:1030-1036. https://doi.org/10.1093/annonc/mdy022