DOI QR코드

DOI QR Code

Shear behavior of short square tubed steel reinforced concrete columns with high-strength concrete

  • Li, Xiang (School of Civil Engineering, Chongqing University) ;
  • Zhou, Xuhong (School of Civil Engineering, Chongqing University) ;
  • Liu, Jiepeng (School of Civil Engineering, Chongqing University) ;
  • Wang, Xuanding (School of Civil Engineering, Chongqing University)
  • Received : 2019.04.09
  • Accepted : 2019.06.21
  • Published : 2019.08.10

Abstract

Six shear-critical square tubed steel reinforced concrete (TSRC) columns using the high-strength concrete ($f_{cu,150}=86.6MPa$) were tested under constant axial and lateral cyclic loads. The height-to-depth ratio of the short column specimens was specified as 2.6, and the axial load ratio and the number of shear studs on the steel shape were considered as two main parameters. The shear failure mode of short square TSRC columns was observed from the test. The steel tube with diagonal stiffener plates provided effective confinement to the concrete core, while welding shear studs on the steel section appeared not significantly enhancing the seismic behavior of short square TRSC columns. Specimens with higher axial load ratio showed higher lateral stiffness and shear strength but worse ductility. A modified ACI design method is proposed to calculate the nominal shear strength, which agrees well with the test database containing ten short square TSRC columns with shear failure mode from this study and other related literature.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. ACI 318 (2014), Building code requirements for structural concrete and commentary, American Concrete Institute; Farmington Hills, MI, USA.
  2. An, G.H., Cha, S.L. and Kim, J.K. (2018), "Modification of the long-term deformation models for steel reinforced concrete columns", Constr. Build. Mater., 189, 245-252. https://doi.org/10.1016/j.conbuildmat.2018.08.095
  3. CEB-FIP model code 1990 (1993), Comite Euro-International du Beton/Federation Internationale de la Precontrainte (CEB-FIP), CEB-FIP model code 1990 CEB bulletin d'Information; Thomas Telford, London, UK.
  4. Chen, Z.P., Xu, J.J., Chen, Y.L. and Xue, J.Y. (2016), "Axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns", Steel Compos. Struct., Int. J., 20(2), 295-316. https://doi.org/10.12989/scs.2016.20.2.295
  5. Choi, E.G., Kim, H.S. and Shin, Y.S. (2012), "Performance of fire damaged steel reinforced high strength concrete (SRHSC) columns", Steel Compos. Struct., Int. J., 12(6), 521-537. https://doi.org/10.12989/scs.2012.13.6.521
  6. Collins, M.P. and Mitchell, D. (1997), Prestressed Concrete Structures, Prentice Hall Inc, Englewood Cliffs, NJ, USA.
  7. El-Tawil, S. and Deierlein, G.G. (1999), "Strength and ductility of concrete encased composite columns", J. Struct. Eng., 125(9), 1009-1019. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:9(1009)
  8. Fam, A., Qie, F.S. and Rizkalla, S. (2004), "Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads", J. Struct. Eng., 130(4), 631-640. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(631)
  9. Fumiya, E. and Masayuki, O. (2001), "Effects of loading rate on mechanical behavior of SRC shearwalls", Steel Compos. Struct., Int. J., 1(2), 201-212. https://doi.org/10.12989/scs.2001.1.2.201
  10. Gardner, N.J. and Jacobson, E.R. (1967), "Structural behavior of concrete filled steel tubes", ACI Struct. J., 64(7), 404-413.
  11. GB50010-2010 (2011), Code for design of concrete structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China; Beijing, China. [In Chinese]
  12. GB/T228-2010 (2010), GB/T228-2010 Metallic materials-Tensile resting-Part 1: Method of test at room temperature, Ministry of Housing and Urban-Rural Development of the People's Republic of China (MOHURD); Beijing, China.
  13. Guo, L., Liu, Y., Fu, F. and Huang, H. (2019), "Behavior of axially loaded circular stainless steel tube confined concrete stub columns", Thin-Wall. Struct., 139, 66-76. https://doi.org/10.1016/j.tws.2019.02.014
  14. Han, L.H., Yao, G.H., Chen, Z.B. and Yu, Q. (2005), "Experimental behaviours of steel tube confined concrete (STCC) columns", Steel Compos. Struct., Int. J., 5(6), 459-484. https://doi.org/10.12989/scs.2005.5.6.459
  15. Johansson, M. and Gylltoft, K. (2002), "Mechanical behavior of circular steel-concrete composite stub columns", J. Struct. Eng., 128(8), 1073-1081. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1073)
  16. Ky, V.S., Tangaramvong, S. and Thepchatri, T. (2015), "In Inelastic analysis for the post-collapse behavior of concrete encased steel composite columns under axial compression", Steel Compos. Struct., Int. J., 19(5), 1237-1258. https://doi.org/10.12989/scs.2015.19.5.1237
  17. Liu, J.P., Abdullah, J.A. and Zhang, S.M. (2011), "Hysteretic behavior and design of square tubed reinforced and steel reinforced concrete (STRC and/or STSRC) short columns", Thin-Wall. Struct., 49(7), 874-888. https://doi.org/10.1016/j.tws.2011.02.012
  18. Le Hoang, A., Fehling, E., Lai, B., Thai, D.K. and Van Chau, N. (2019), "Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube", Eng. Struct., 187, 457-477. https://doi.org/10.1016/j.engstruct.2019.02.063
  19. Lu, X., Yin, X. and Jiang, H. (2014), "Experimental study on hysteretic properties of SRC columns with high steel ratio", Steel Compos. Struct., Int. J., 17(3), 287-303. https://doi.org/10.12989/scs.2014.17.3.287
  20. McAteer, P., Bonacci, J.F. and Lachemi, M. (2004), "Composite response of high-strength concrete confined by circular steel tube", Struct. J., 101(4), 466-474.
  21. Morsch, E. (1902) Der, Eisenbetonbau: Seine Anwendung Und Theorie, Wayss and Freytag, AG, Im Selbstverlag der Firma, Neustadt ad Haardt.
  22. Nematzadeh, M., Fazli, S., Naghipour, M. and Jalali, J. (2017), "Experimental study on modulus of elasticity of steel tubeconfined concrete stub columns with active and passive confinement", Eng. Struct., 130, 142-153. https://doi.org/10.1016/j.engstruct.2016.10.008
  23. O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thinwalled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)
  24. Ou, Y.C. and Kurniawan, D.P. (2015), "Shear behavior of reinforced concrete columns with high-strength steel and concrete", ACI Struct. J., 112(1), 12.
  25. Piquer, A. and Hernandez-Figueirido, D. (2016), "Protected steel columns vs partially encased columns: Fire resistance and economic considerations", J. Constr. Steel Res., 124, 47-56. https://doi.org/10.1016/j.jcsr.2016.05.011
  26. Ritter, W. (1899), "Die bauweise hennebique", Schweizerische Bauzeitung, 33(7), 59-61.
  27. Tomii, M., Sakino, K., Xiao, Y. and Watanabe, K. (1985), "Lateral load capacity of reinforced concrete short columns confined by steel tube", Proceedings of the International Speciality Conference on Concrete Filled Steel Tubular Structures, Harbin, China, August.
  28. Wang, Q., Shi, Q. and Tian, H. (2016), "Experimental study on shear capacity of SRC joints with different arrangement and sizes of cross-shaped steel in column", Steel Compos. Struct., Int. J., 21(2), 267-287. https://doi.org/10.12989/scs.2016.21.2.267
  29. Xiong, M.X., Xiong, D.X. and Liew, J.R. (2017), "Axial performance of short concrete filled steel tubes with high-and ultra-high-strength materials", Eng. Struct., 136, 494-510. https://doi.org/10.1016/j.engstruct.2017.01.037
  30. Xue, J.Y., Chen, Z.P., Zhao, H.T., Gao, L. and Liu, Z.Q. (2012), "Shear mechanism and bearing capacity calculation on steel reinforced concrete special-shaped columns", Steel Compos. Struct., Int. J., 13(5), 473-487. https://doi.org/10.12989/scs.2012.13.5.473
  31. Yang, H., Liu, F. and Gardner, L. (2015), "Post-fire behaviour of slender reinforced concrete columns confined by circular steel tubes", Thin-Wall. Struct., 87, 12-29. https://doi.org/10.1016/j.tws.2014.10.014
  32. Zhang, Y., Pei, J., Huang, Y., Lei K., Song, J. and Zhang, Q. (2018), "Seismic behaviors of ring beams joints of steel tubereinforced concrete column structure", Steel Compos. Struct., Int. J., 27(4), 417-426. https://doi.org/10.12989/scs.2018.27.4.417
  33. Zhao, D.Z., Wang, Q.X. and Guan, P. (2005), "Research on loadbearing capacity of steel tubular columns filled with steelreinforced high-strength concrete subjected to compression and bending", Ind. Constr., 35(9), 84-93. https://doi.org/10.3321/j.issn:1000-8993.2005.09.023
  34. Zhao, Y.G., Lin, S., Lu, Z.H., Saito, T. and He, L. (2018), "Loading paths of confined concrete in circular concrete loaded CFT stub columns subjected to axial compression", Eng. Struct., 156, 21-31. https://doi.org/10.1016/j.engstruct.2017.11.010
  35. Zhou, X.H. and Liu, J.P. (2010), "Seismic behavior and strength of tubed steel reinforced concrete (SRC) short columns", J. Constr. Steel Res., 66(7), 885-896. https://doi.org/10.1016/j.jcsr.2010.01.020

Cited by

  1. Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns vol.35, pp.2, 2019, https://doi.org/10.12989/scs.2020.35.2.295