Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Alam, M.S., Youssef, M.A. and Nehdi, M. (2007), "Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review", Can. J. Civ. Eng., 34(9), 1075-1086. https://doi.org/10.1139/l07-038
- Auricchio, F. and Sacco, E. (1997), "A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite", Int. J. Non. Linear. Mech., 32(6), 1101-1114. https://doi.org/10.1016/S0020-7462(96)00130-8
- Azariani, H.R., Reza Esfahani, M. and Shariatmadar, H. (2018), "Behavior of exterior concrete beam-column joints reinforced with Shape Memory Alloy (SMA) bars", Steel Compos. Struct., Int. J., 28(1), 83-98. https://doi.org/10.12989/scs.2018.28.1.083
- DesRoches, R., McCormick, J. and Delemont, M. (2004), "Cyclic properties of superelastic shape memory alloy wires and bars", J. Struct. Eng., 130(1), 38-46. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(38)
- Elbahy, Y.I. and Youssef, M.A. (2019), "Flexural behaviour of superelastic shape memory alloy reinforced concrete beams during loading and unloading stages", Eng. Struct., 181, 246-259. https://doi.org/10.1016/j.engstruct.2018.12.001
- Fang, C., Zheng, Y., Chen, J., Yam, M.C.H. and Wang, W. (2019), "Superelastic NiTi SMA cables: Thermal-mechanical behavior, hysteretic modelling and seismic application", Eng. Struct., 183, 533-549. https://doi.org/10.1016/j.engstruct.2019.01.049
- Farmani, M.A. and Ghassemieh, M. (2016), "Shape memory alloy-based moment connections with superior self-centering properties", Smart Mater. Struct., 25(7). https://doi.org/10.1088/0964-1726/25/7/075028
- Farzampour, A. and Eatherton, M.R. (2019), "Yielding and lateral torsional buckling limit states for butterfly-shaped shear links", Eng. Struct., 180, 442-451. https://doi.org/10.1016/j.engstruct.2018.10.040
- Gao, N., Jeon, J.S., Hodgson, D.E. and Desroches, R. (2016), "An innovative seismic bracing system based on a superelastic shape memory alloy ring", Smart Mater. Struct., 25(5). https://doi.org/10.1088/0964-1726/25/5/055030
- Hu, J.W., Noh, M.H. and Ahn, J.H. (2018), "Experimental investigation on the behavior of bracing damper systems by utilizing metallic yielding and recentering material devices", Adv. Mater. Sci. Eng., 2018. https://doi.org/10.1155/2018/2813058
- Kari, A., Ghassemieh, M. and Abolmaali, S.A. (2011), "A new dual bracing system for improving the seismic behavior of steel structures", Smart Mater. Struct., 20(12). https://doi.org/10.1088/0964-1726/20/12/125020
- Lu, X., Dang, X., Qian, J., Zhou, Y. and Jiang, H. (2017), "Experimental study of self-centering shear walls with horizontal bottom slits", J. Struct. Eng., 143(3). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001673
- Mirtaheri, M., Amini, M. and Khorshidi, H. (2017), "Incremental dynamic analyses of concrete buildings reinforced with shape memory alloy", Steel Compos. Struct., Int. J., 23(1), 95-105. https://doi.org/10.12989/scs.2017.23.1.095
- Mirzaeifar, R., DesRoches, R. and Yavari, A. (2011), "A combined analytical, numerical, and experimental study of shape-memoryalloy helical springs", Int. J. Solids Struct., 48(3), 611-624. https://doi.org/10.1016/j.ijsolstr.2010.10.026
- Mirzai, N.M., Attarnejad, R. and Hu, J.W. (2018), "Enhancing the seismic performance of EBFs with vertical shear link using a new self-centering damper", Ing. Sismica, 35(4), 57-76.
- Moradi, S. and Alam, M.S. (2015), "Feasibility study of utilizing superelastic shape memory alloy plates in steel beam-column connections for improved seismic performance", J. Intell. Mater. Syst. Struct., 26(4), 463-475. https://doi.org/10.1177/1045389X14529032
- Ozbulut, O.E. and Hurlebaus, S. (2011), "Seismic assessment of bridge structures isolated by a shape memory alloy/rubber-based isolation system", Smart Mater. Struct., 20(1). https://doi.org/10.1088/0964-1726/20/1/015003
- Pan, S., Hu, M., Zhang, X., Hui, H. and Wang, S. (2019), "A new near-surface-mounted anchorage system of shape memory alloys for local strengthening", Smart Mater. Struct., 28(2). https://doi.org/10.1088/1361-665X/aaf24e
- Preciado, A., Ramirez-Gaytan, A., Gutierrez, N., Vargas, D., Falcon, J.M. and Ochoa, G. (2018), "Nonlinear earthquake capacity of slender old masonry structures prestressed with steel, FRP and NiTi SMA tendons", Steel Compos. Struct., 26(2), 213-226. https://doi.org/10.12989/scs.2018.26.2.213
- Seo, J., Kim, Y.C. and Hu, J.W. (2015), "Pilot study for investigating the cyclic behavior of slit damper systems with recentering shape memory alloy (SMA) bending bars used for seismic restrainers", Appl. Sci. (Switzerland), 5(3), 187-208. https://doi.org/10.3390/app5030187
- Silwal, B., Huang, Q., Ozbulut, O.E. and Dyanati, M. (2018), "Comparative seismic fragility estimates of steel moment frame buildings with or without superelastic viscous dampers", J. Intell. Mater. Syst. Struct., 29(18), 3598-3613. https://doi.org/10.1177/1045389X18798936
- Speicher, M.S., DesRoches, R. and Leon, R.T. (2011), "Experimental results of a NiTi shape memory alloy (SMA)-based recentering beam-column connection", Eng. Struct., 33(9), 2448-2457. https://doi.org/10.1016/j.engstruct.2011.04.018
- Speicher, M.S., DesRoches, R. and Leon, R.T. (2017), "Investigation of an articulated quadrilateral bracing system utilizing shape memory alloys", J. Constr. Steel Res., 130, 65-78. https://doi.org/10.1016/j.jcsr.2016.11.022
- Sultana, P. and Youssef, M.A. (2016), "Seismic performance of steel moment resisting frames utilizing superelastic shape memory alloys", J. Constr. Steel Res., 125, 239-251. https://doi.org/10.1016/j.jcsr.2016.06.019
- Wang, B., Zhu, S., Qiu, C.X. and Jin, H. (2019), "Highperformance self-centering steel columns with shape memory alloy bolts: Design procedure and experimental evaluation", Eng. Struct., 182, 446-458. https://doi.org/10.1016/j.engstruct.2018.12.077
- Xu, X., Tu, J., Cheng, G., Zheng, J. and Luo, Y. (2019), "Experimental study on self-centering link beams using posttensioned steel-SMA composite tendons", J. Constr. Steel Res., 155, 121-128. https://doi.org/10.1016/j.jcsr.2018.12.026
- Zahrai, S.M. (2015), "Cyclic testing of chevron braced steel frames with IPE shear panels", Steel Compos. Struct., Int. J., 19(5), 1167-1184. https://doi.org/10.12989/scs.2015.19.5.1167
- Zahrai, S.M., Moradi, A. and Moradi, M. (2015), "Using friction dampers in retrofitting a steel structure with masonry infill panels", Steel Compos. Struct., Int. J., 19(2), 309-325. https://doi.org/10.12989/scs.2015.19.2.309
- Zareie, S., Mirzai, N.M., Alam, M.S. and Seethlaer, R.J. (2017), "A dynamic analysis of a novel shape memory alloy-based bracing system", Proceedings of the 6th International Conference on Engineering Mechanics and Materials, Vancouver, Canada.
- Zareie, S., Alam, M.S. and Seethlaer, R.J. (2019a), "A shape memory alloy-magnetorheological fluid core bracing system for civil engineering applications: feasibility study", Proceedings of the 7th International Specialty Conference on Engineering Mechanics and Materials, Laval, Canada.
- Zareie, S., Alam, M.S., Seethlaer, R.J. and Zabihollah, A. (2019b), "Effect of shape memory alloy-magnetorheological fluid-based structural control system on the marine structure using nonlinear time-history analysis", Appl. Ocean Res. [In press] https://doi.org/10.1016/j.apor.2019.05.021
- Zeynali, K., Saeed Monir, H., Mirzai, N.M. and Hu, J.W. (2018), "Experimental and numerical investigation of lead-rubber dampers in chevron concentrically braced frames", Arch. Civ. Mech. Eng., 18(1), 162-178. https://doi.org/10.1016/j.acme.2017.06.004
- Zheng, Y. and Dong, Y. (2019), "Performance-based assessment of bridges with steel-SMA reinforced piers in a life-cycle context by numerical approach", Bull. Earthq. Eng., 17(3), 1667-1688. https://doi.org/10.1007/s10518-018-0510-x
Cited by
- Analytical investigation of the behavior of a new smart recentering shear damper under cyclic loading vol.31, pp.4, 2019, https://doi.org/10.1177/1045389x19888786
- Experimental study of new axial recentering dampers equipped with shape memory alloy plates vol.28, pp.3, 2019, https://doi.org/10.1002/stc.2680
- Dynamic test and numerical simulation on avoiding the weak-story failure mechanism in structures using LSFDs vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.175
- Experimental Study on the Behavior of Polyurethane Springs for Compression Members vol.11, pp.21, 2021, https://doi.org/10.3390/app112110223