DOI QR코드

DOI QR Code

Ratcheting boundary of pressurized pipe under reversed bending

  • Chen, Xiaohui (School of Control Engineering, Northeastern University) ;
  • Chen, Xu (School of Mechanical Engineering & Automation, School of Tianjin University) ;
  • Li, Zifeng (School of Mechanical Engineering & Automation, Yanshan University)
  • Received : 2018.11.07
  • Accepted : 2019.06.10
  • Published : 2019.08.10

Abstract

Ratcheting boundary is firstly determined by experiment, elastic-plastic finite element analysis combined with C-TDF and linear matching method, which is compared with ASME/KTA and RCC-MR. Moreover, based on elastic modulus adjustment procedure, a novel method is proposed to predict the ratcheting boundary for a pressurized pipe subjected to constant internal pressure and cyclic bending loading. Comparison of ratcheting boundary of elbow pipe determined by the proposed method, elastic-plastic finite element analysis combined with C-TDF and linear matching method, which indicates that the predicted results of the proposed method are in well agreement with those of linear matching method.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of Hebei Province of China, China Postdoctoral Science Foundation, Central Universities

References

  1. Abdalla, H.F., Megahed, M.M. and Younan, M.Y. (2009), "Comparison of pipe bend ratchetting/ shakedown test results with the shakedown boundary determined via a simplified technique", Proceedings of the ASME - PVP Division Conference, Prague, Czech Republic.
  2. Abdalla, H.F., Megahed, M.M. and Younan, M.Y.A. (2011), "A simplified technique for shakedown limit load determination of a large square plate with a small central hole under cyclic biaxial loading", Nuclear Eng. Des., 241, 657-665. https://doi.org/10.1016/j.nucengdes.2010.11.019
  3. Abou-Hanna, J. and McGreevy, T.E. (2011), "A simplified ratcheting limit method based on limit analysis using modified yield surface", Int. J. Pres. Ves. Pip., 88, 11-18. https://doi.org/10.1016/j.ijpvp.2010.12.001
  4. Adibi-Asl, R. and Reinhardt, W. (2010), "Ratchet boundary determination using a noncyclic method", J. Press. Vess. - T. ASME, 132, 021201. https://doi.org/10.1115/1.4000506
  5. Adibi-Asl, R., Fanous, I.F.Z. and Seshadri, R. (2006), "Elastic modulus adjustment procedures improved convergence schemes", Int. J. Pres. Ves. Pip., 83, 154-160. https://doi.org/10.1016/j.ijpvp.2005.11.002
  6. Asada, S., Yamashita, N., Okamoto, A. and Nishiguchi, I. (2002), "Verification of alternative criteria for shakedown evaluation using flat head vessel", ASME PVP, 439, 17-22. https://doi.org/10.1115/PVP2002-1217
  7. ASME (2017), ASME boiler and pressure vessel code, section III; American Society of Mechanical Engineer, New York, USA.
  8. Bradford, R.A.W. and Tipping, D.J. (2015), "The ratchet-shakedown diagram for a thin pressurised pipe subject to additional axial load and cyclic secondary global bending", Int. J. Pres. Ves. Pip., 134, 92-100. https://doi.org/10.1016/j.ijpvp.2015.08.008
  9. Bree, J. (1967), "Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements", J. Strain Anal. Eng., 2, 226-238. https://doi.org/10.1243/03093247V023226
  10. Bree, J. (1989), "Plastic deformation of a closed tube due to interaction of pressure stresses and cyclic thermal stresses", Int. J. Mech. Sci., 31, 865-892. https://doi.org/10.1016/0020-7403(89)90030-1
  11. Calladine, C.R. (2000), Plasticity for Engineers, Horwood Publisheing, Chichester, UK.
  12. Chaboche, J.L. (1986), "Time-independent constitutive theories for cyclic plasticity", Int. J. Plast., 2, 149-188. https://doi.org/10.1016/0749-6419(86)90010-0
  13. Chen, X., Jiao, R. and Kim, K.S. (2005), "On the Ohno-Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel", Int. J. Plast., 21, 161-184. https://doi.org/10.1016/j.ijplas.2004.05.005
  14. Chen, H.F., Ure, J.M. and Tipping, D. (2013), "Calculation of a lower bound ratchet limit part 1 - Theory, numerical implementation and verification", Eur. J. of Mechanics / A Solids, 37, 361-368. https://doi.org/10.1016/j.euromechsol.2012.04.001
  15. Chen, X.H., Chen, X., Chen, G. and Li, D.M. (2015), "Ratcheting behavior of pressurized Z2CND18.12N stainless steel pipe under different control modes", Steel Compos. Struct., Int. J., 18(1), 29-50. https://doi.org/10.12989/scs.2015.18.1.029
  16. Chen, X.H., Chen, X., Chen, G. and Li, D.M. (2016), "Evaluation of AF type cyclic plasticity models in ratcheting simulation of pressurized elbow pipes under reversed bending", Steel Compos. Struct., Int. J., 21(4), 703-753. http://dx.doi.org/10.12989/scs.2016.21.4.703
  17. Kan, Q.H., Li, J., Jiang, H. and Kang, G.Z. (2017), "An Improved Thermo-Ratcheting Boundary of Pressure Pipeline", Key Eng. Mater., 725, 311-315. https://doi.org/10.4028/www.scientific.net/KEM.725.311
  18. Konstantinos, V.S. and Konstantinos, D.P. (2012), "A direct method to predict cyclic steady states of elastoplastic structures", Compos. Method Appl. Mech. Eng., 223-224, 186-198. https://doi.org/10.1016/j.cma.2012.03.004
  19. KTA (2014), "Kerntechnischer Ausschuss; Sicherheitstechnische Regel des KTA, Komponenten des primarkreises von Leichtwasserreaktoren", Teil: Auslegung, Konstruktion und Berchnung, Regelanderungsentwurf.
  20. Liu, Y.H., Chen, L.J. and Xu, B.Y. (2009), "Modified elastic compensation method for limit analysis of complex structures", Pres. Ves. Technology, 26(10), 10-16. [In Chinese] https://doi.org/10.3969/j.issn.1001-4837.2009.10.003
  21. Martin, M. and Rice, D. (2009), "A Hybrid Procedure for Ratchet Boundary Prediction", ASME PVP Conference, Prague, Czech Republic.
  22. Moreton, D.G., Yahiaoui, K. and Moffat, D.G. (1996), "Onset of ratchetting in pressurized piping elbows subjected to in-plane bending moments", Int. J. Pres. Ves. Pip., 68, 73-79. https://doi.org/10.1016/0308-0161(94)00041-7
  23. Muscat, M., Hamilton, R. and Boyle, J.T. (2002), "Shakedown analysis for complex loading using superposition", J. Strain Analysis, 37 (5), 399-412. https://doi.org/10.1243/030932402760203865
  24. Nayebi, A. and Hamidpour, M. (2015), "Thermo-mechanical cyclic loading analysis of pipes with different type of defects: Temperature dependent properties", P.I. Mech. Eng. L - J. Mater., 230, 303-310. https://doi.org/10.1177/1464420715571432
  25. Nilsson, K.F., Dolci, F., Seldis, T., Ripplinger, S., Grah, A. and Simonovski, I. (2016), "Assessment of thermal fatigue life for 316L and P91 pipe components at elevated temperatures", Eng. Fract. Mech., 168, 73-91. https://doi.org/10.1016/j.engfracmech.2016.09.006
  26. Ohno, N. and Wang, J.D. (1993), "Kinematic Hardening Rules With Critical State of Dynamic Recovery. Part II: Application to Experiments of Ratcheting Behavior", Int. J. Plast., 9, 391-403. https://doi.org/10.1016/0749-6419(93)90043-P
  27. Pan, L. and Seshadri, R. (2001), "Limit Load Estimation Using Plastic Flow Parameter in Repeated Elastic Finite Element Analysis", ASME J. Pressure Vessel Technol., 124, 433-439. https://doi.org/10.1115/1.1499960
  28. Peng, H.Y., Zheng, X.T., Yu, J.Y., Xu, J.M., Wang, C.G. and Lin, W. (2015), "Ratchet Limit Estimation of Pressurized Pipes under Cyclic Bending Moment", Procedia Eng., 130, 1224-1232. https://doi.org/10.1016/j.proeng.2015.12.294
  29. Ponter, A.R.S. and Chen, H. (2001), "A minimum theorem for cyclic load in excess of shakedown, with applications to the evaluation of a ratchet limit", Eur. J. Mech. A/Solids, 20, 539-553. https://doi.org/10.1016/S0997-7538(01)01161-5
  30. Prager, W. (1956), "A new method of analyzing stresses and strains in work-hardening plastic solids", J. Appl. Math., 23, 493-496.
  31. RCC-MR (2007), Design rules for class 1 equipment, RCC-MR codes, revision.
  32. Reinhardt, W. (2008), "A noncyclic method for plastic shakedown analysis", J. Press. Vess. - T. ASME, 130(3), 031209. https://doi.org/10.1115/1.2937760
  33. Reinhardt, W.D. and Seshadri, R. (2003), "Limit load bounds for the $m{\alpha}$ multipliers", J. Press. Vess. - T. ASME, 125, 11-18. https://doi.org/10.1115/1.1526858
  34. Seshadri, R. and Mangalaramanan, S. (1997), "Lower bound limit loads using variational concepts: the $m{\alpha}$ method", Int. J. Pres. Ves. Pip., 71, 93-106. https://doi.org/10.1016/S0308-0161(96)00071-3
  35. Shen, J., Chen, H.F. and Liu, Y.H. (2018), "A new fourdimensional ratcheting boundary: Derivation and numerical validation", Eur. J. Mech. - A/Solids, 71, 101-112. https://doi.org/10.1016/j.euromechsol.2018.03.005
  36. Varvani- Farahani, A. and Nayebi, A. (2017), "Ratcheting in pressurized pipes and equipment: A review on affecting parameters, modelling, safety codes, and challenges", Fatigue Fract. Eng. Mater. Struct., 41, 503-538. https://doi.org/10.1111/ffe.12775
  37. Wolters, J., Breitbach, G., Roding, M. and Nickel, H. (1997), "Investigation of the ratcheting phenomenon for dominating bending loads", Nucl. Eng. Des., 174, 353-363. https://doi.org/10.1016/S0029-5493(97)00128-3
  38. Yamamoto, Y., Yamashita, N. and Tanaka, M. (2002), "Evaluation of thermal stress ratchet in plastic FEA", ASME PVP, 439, 3-10. https://doi.org/10.1115/PVP2002-1215
  39. Zakavi, S.J., Shiralivand, B. and Nourbakhsh, M. (2017), "Evaluation of combined hardening model in ratcheting behavior of pressurized piping elbows subjected to in-plane moments", J. Compos. Appl. Res. Mech. Eng., 7(1), 57-71. https://doi.org/10.22061/JCARME.2017.640
  40. Zheng, X.T., Peng H.Y., Yu J.Y., Wang, W., Lin, W. and Xu, J.M. (2017), "Analytical ratchet limit for pressurized pipeline under cyclic nonproportional loadings", J. Pipeline Syst. Pract., 8(3), 04017002. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000260