참고문헌
- Aifantis, E.C. (1999), "Strain gradient interpretation of size effects", In: Fracture Scaling, Springer, Dordrecht, pp. 299-314.
- Akgoz, B. and Civalek, O . (2011), "Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams", Int. J. Eng. Sci., 49(11), 1268-1280. https://doi.org/10.1016/j.ijengsci.2010.12.009
- Altan, B.S. and Aifantis, E.C. (1997), "On some aspects in the special theory of gradient elasticity", J. Mech. Behavior Mater., 8(3), 231-282. https://doi.org/10.1515/JMBM.1997.8.3.231
- Amanatidou, E. and Aravas, N. (2002), "Mixed finite element formulations of strain-gradient elasticity problems", Comput. Methods Appl. Mech. Eng., 191(15-16), 1723-1751. https://doi.org/10.1016/S0045-7825(01)00353-X
- Arash, B. and Ansari, R. (2010), "Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain", Physica E: Low-dimens. Syst. Nanostruct., 42(8), 2058-2064. https://doi.org/10.1016/j.physe.2010.03.028
- Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., Int. J., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479
- Askes, H. and Aifantis, E.C. (2002), "Numerical modeling of size effects with gradient elasticity-formulation, meshless discretization and examples", Int. J. Fract., 117(4), 347-358. https://doi.org/10.1023/A:1022225526483
- Belytschko, T., Gracie, R. and Ventura, G. (2009), "A review of extended/generalized finite element methods for material modeling", Model. Simul. Mater. Sci. Eng., 17(4), 043001. https://doi.org/10.1088/0965-0393/17/4/043001
- Cadek, M., Coleman, J.N., Ryan, K.P., Nicolosi, V., Bister, G., Fonseca, A. and Blau, W.J. (2004), "Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area", Nano Letters, 4(2), 353-356. https://doi.org/10.1021/nl035009o
- Chakraverty, S. and Behera, L. (2015), "Small scale effect on the vibration of non-uniform nanoplates", Struct. Eng. Mech., Int. J., 55(3), 495-510. https://doi.org/10.12989/sem.2015.55.3.495
- Chen, W.X., Tu, J.P., Wang, L.Y., Gan, H.Y., Xu, Z.D. and Zhang, X.B. (2003), "Tribological application of carbon nanotubes in a metal-based composite coating and composites", Carbon, 41(2), 215-222. https://doi.org/10.1016/S0008-6223(02)00265-8
- Chong, A.C.M., Yang, F., Lam, D.C. and Tong, P. (2001), "Torsion and bending of micron-scaled structures", J. Mater. Res., 16(4), 1052-1058. https://doi.org/10.1557/JMR.2001.0146
- Darabi, A. and Vosoughi, A.R. (2016), "A hybrid inverse method for small scale parameter estimation of FG nanobeams", Steel Compos. Struct., Int. J., 20(5), 1119-1131. https://doi.org/10.12989/scs.2016.20.5.1119
- Despotovic, N. (2018), "Stability and vibration of a nanoplate under body force using nonlocal elasticity theory", Acta Mechanica, 229(1), 273-284. https://doi.org/10.1007/s00707-017-1962-9
- Eringen, A.C. (1972a), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X
- Eringen, A.C. (1972b), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026
- Ghavanloo, E. and Fazelzadeh, S.A. (2016), "Evaluation of nonlocal parameter for single-walled carbon nanotubes with arbitrary chirality", Meccanica, 51(1), 41-54. https://doi.org/10.1007/s11012-015-0195-z
- Gholami, R. and Ansari, R. (2016), "A most general strain gradient plate formulation for size-dependent geometrically nonlinear free vibration analysis of functionally graded shear deformable rectangular microplates", Nonlinear Dyn., 84(4), 2403-2422. https://doi.org/10.1007/s11071-016-2653-0
- Gu, Y., Wang, Q.X. and Lam, K.Y. (2007), "A meshless local Kriging method for large deformation analyses", Comput. Methods Appl. Mech. Eng., 196(9-12), 1673-1684. https://doi.org/10.1016/j.cma.2006.09.017
- Hosseini, S.M. (2018), "Analytical solution for nonlocal coupled thermoelasticity analysis in a heat-affected MEMS/NEMS beam resonator based on Green-Naghdi theory", Appl. Math. Model., 57, 21-36. https://doi.org/10.1016/j.apm.2017.12.034
- Hosseini, S.M. and Zhang, C. (2018a), "Coupled thermoelastic analysis of an FG multilayer graphene platelets-reinforced nanocomposite cylinder using meshless GFD method: A modified micromechanical model", Eng. Anal. Boundary Elem., 88, 80-92. https://doi.org/10.1016/j.enganabound.2017.12.010
- Hosseini, S.M. and Zhang, C. (2018b), "Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., Int. J., 27(3), 255-271. https://doi.org/10.12989/scs.2018.27.3.255
- Kiani, K. (2014), "A nonlocal meshless solution for flexural vibrations of double-walled carbon nanotubes", Appl. Math. Computat., 234, 557-578. https://doi.org/10.1016/j.amc.2014.01.015
- Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
- Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method", Compos. Struct., 127, 245-259. https://doi.org/10.1016/j.compstruct.2015.03.019
- Liu, G.R. and Gu, Y.T. (2005), An introduction to meshfree methods and their programming, Springer Science & Business Media.
- Ma, Q. and Clarke, D.R. (1995), "Size dependent hardness of silver single crystals", J. Mater. Res., 10(4), 853-863. DOI: https://doi.org/10.1557/JMR.1995.0853
- Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Compos. Part B: Eng., 52, 84-92. https://doi.org/10.1016/j.compositesb.2013.03.046
- Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Archive Rational Mech. Anal., 16(1), 51-78. https://doi.org/10.1007/BF00248490
- Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., Int. J., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415
- Nguyen, T.N., Kim, N.I. and Lee, J. (2017), "Static behavior of nonlocal Euler-Bernoulli beam model embedded in an elastic medium using mixed finite element formulation", Struct. Eng. Mech., Int. J., 63(2), 137-146. https://doi.org/10.12989/sem.2017.63.2.137
- Nikkar, A., Rouhi, S. and Ansari, R. (2017), "Finite element modeling of the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes", Struct. Eng. Mech., Int. J., 64(3), 329-337. https://doi.org/10.12989/sem.2017.64.3.329
- Panyatong, M., Chinnaboon, B. and Chucheepsakul, S. (2018), "Nonlinear bending analysis of nonlocal nanoplates with general shapes and boundary conditions by the boundary-only method", Eng. Anal. Boundary Elem., 87, 90-110. https://doi.org/10.1016/j.enganabound.2017.12.003
- Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Computat. Mater. Sci., 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040
- Polizzotto, C. (2001), "Nonlocal elasticity and related variational principles", Int. J. Solids Struct., 38(42-43), 7359-7380. https://doi.org/10.1016/S0020-7683(01)00039-7
- Poole, W.J., Ashby, M.F. and Fleck, N.A. (1996), "Micro-hardness of annealed and work-hardened copper polycrystal", Scripta Materialia, 34(4), 559-564. https://doi.org/10.1016/1359-6462(95)00524-2
- Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2015), "A meshless local Petrov-Galerkin method for nonlinear dynamic analyses of hyper-elastic FG thick hollow cylinder with Rayleigh damping", Acta Mechanica, 226(5), 1497-1513. https://doi.org/10.1007/s00707-014-1266-2
- Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., Int. J., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339
- Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020
- Schwartz, M., Niane, N.T. and Njiwa, R.K. (2012), "A simple solution method to 3D integral nonlocal elasticity: Isotropic-BEM coupled with strong form local radial point interpolation", Eng. Anal. Boundary Elem., 36(4), 606-612. https://doi.org/10.1016/j.enganabound.2011.10.004
- Sladek, J., Sladek, V., Hrcek, S. and Pan, E. (2017), "The nonlocal and gradient theories for a large deformation of piezoelectric nanoplates", Compos. Struct., 172, 119-129. https://doi.org/10.1016/j.compstruct.2017.03.080
- Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., Int. J., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755
- Toupin, R.A. (1964), "Theories of elasticity with couple-stress", Archive Rational Mech. Anal., 17(2), 85-112. https://doi.org/10.1007/BF00253050
- Wang, K.F., Wang, B.L. and Kitamura, T. (2016), "A review on the application of modified continuum models in modeling and simulation of nanostructures", Acta Mechanica Sinica, 32(1), 83-100. https://doi.org/10.1007/s10409-015-0508-4
- Wang, L., He, X., Sun, Y. and Liew, K.M. (2017a), "A mesh-free vibration analysis of strain gradient nano-beams", Eng. Anal. Bound. Elem., 84, 231-236. https://doi.org/10.1016/j.enganabound.2017.09.001
- Wang, Y., Li, F., Wang, Y. and Jing, X. (2017b), "Nonlinear responses and stability analysis of viscoelastic nanoplate resting on elastic matrix under 3: 1 internal resonances", Int. J. Mech. Sci., 128, 94-104. https://doi.org/10.1016/j.ijmecsci.2017.04.010
- Wang, Y., Li, F.M. and Wang, Y.Z. (2015a), "Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method", Chaos: An Interdiscipl. J. Nonlinear Sci., 25(6), 063108. https://doi.org/10.1063/1.4922299
- Wang, Y., Li, F.M. and Wang, Y.Z. (2015b), "Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory", Physica E: Low-dimens. Syst. Nanostruct., 67, 65-76. https://doi.org/10.1016/j.physe.2014.11.007
- Wang, Y.Z., Li, F.M. and Kishimoto, K. (2010), "Scale effects on the longitudinal wave propagation in nanoplates", Physica E: Low-dimens. Syst. Nanostruct., 42(5), 1356-1360. https://doi.org/10.1016/j.physe.2009.11.036
- Wang, Y., Li, F. and Shu, H. (2019), "Nonlocal nonlinear chaotic and homoclinic analysis of double layered forced viscoelastic nanoplates", Mech. Syst. Signal Process., 122, 537-554. https://doi.org/10.1016/j.ymssp.2018.12.041
- Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Yu, Y.J., Xue, Z.N., Li, C.L. and Tian, X.G. (2016), "Buckling of nanobeams under nonuniform temperature based on nonlocal thermoelasticity", Compos. Struct., 146, 108-113. https://doi.org/10.1016/j.compstruct.2016.03.014
- Yu, Y.J., Tian, X.G. and Liu, J. (2017), "Size-dependent damping of a nanobeam using nonlocal thermoelasticity: extension of Zener, Lifshitz, and Roukes' damping model", Acta Mechanica, 228(4), 1287-1302. https://doi.org/10.1007/s00707-016-1769-0
- Zhang, L.W. (2017), "An element-free based IMLS-Ritz method for buckling analysis of nanocomposite plates of polygonal planform", Eng. Anal. Boundary Elem., 77, 10-25. https://doi.org/10.1016/j.enganabound.2015.01.007
- Zhang, L.W. and Liew, K.M. (2015), "Large deflection analysis of FG-CNT reinforced composite skew plates resting on Pasternak foundations using an element-free approach", Compos. Struct., 132, 974-983. https://doi.org/10.1016/j.compstruct.2015.07.017
- Zhang, L.W. and Liew, K.M. (2016), "Postbuckling analysis of axially compressed CNT reinforced functionally graded composite plates resting on Pasternak foundations using an element-free approach", Compos. Struct., 138, 40-51. https://doi.org/10.1016/j.compstruct.2015.11.031
- Zhang, L.W. and Selim, B.A. (2017), "Vibration analysis of CNTreinforced thick laminated composite plates based on Reddy's higher-order shear deformation theory", Compos. Struct., 160, 689-705. https://doi.org/10.1016/j.compstruct.2016.10.102
- Zhang, L.W. and Xiao, L.N. (2017), "Mechanical behavior of laminated CNT-reinforced composite skew plates subjected to dynamic loading", Compos. Part B: Eng., 122, 219-230. https://doi.org/10.1016/j.compositesb.2017.03.041
- Zhang, L.W., Zhu, P. and Liew, K.M. (2014), "Thermal buckling of functionally graded plates using a local Kriging meshless method", Compos. Struct., 108, 472-492. https://doi.org/10.1016/j.compstruct.2013.09.043
- Zhang, L.W., Song, Z.G. and Liew, K.M. (2015a), "State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory", Compos. Struct., 134, 989-1003. https://doi.org/10.1016/j.compstruct.2015.08.138
- Zhang, L.W., Li, D.M. and Liew, K.M. (2015b), "An element-free computational framework for elastodynamic problems based on the IMLS-Ritz method", Eng. Anal. Boundary Elem., 54, 39-46. https://doi.org/10.1016/j.compstruct.2015.11.031
- Zhang, L.W., Liu, W.H. and Liew, K.M. (2016a), "Geometrically nonlinear large deformation analysis of triangular CNTreinforced composite plates", Int. J. Non-Linear Mech., 86, 122-132. https://doi.org/10.1016/j.ijnonlinmec.2016.08.004
- Zhang, L.W., Song, Z.G. and Liew, K.M. (2016b), "Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow", Comput. Methods Appl. Mech. Eng., 300, 427-441. https://doi.org/10.1016/j.cma.2015.11.029
- Zhang, Y., Zhang, L.W., Liew, K.M. and Yu, J.L. (2016c), "Buckling analysis of graphene sheets embedded in an elastic medium based on the kp-Ritz method and non-local elasticity theory", Eng. Anal. Boundary Elem., 70, 31-39. https://doi.org/10.1016/j.enganabound.2016.05.009
- Zhang, L.W., Liew, K.M. and Reddy, J.N. (2016d), "Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression", Comput. Methods Appl. Mech. Eng., 298, 1-28. https://doi.org/10.1016/j.cma.2015.09.016
- Zhang, L.W., Song, Z.G. and Liew, K.M. (2016e), "Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches", Compos. Part B: Eng., 85, 140-149. https://doi.org/10.1016/j.compositesb.2015.09.044
- Zhang, L.W., Song, Z.G., Qiao, P. and Liew, K.M. (2017), "Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads", Comput. Methods Appl. Mech. Eng., 313, 889-903. https://doi.org/10.1016/j.cma.2016.10.020
- Zhu, P., Zhang, L.W. and Liew, K.M. (2014), "Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation", Compos. Struct., 107, 298-314. https://doi.org/10.1016/j.compstruct.2013.08.001
피인용 문헌
- Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.077