DOI QR코드

DOI QR Code

Nonlocal geometrically nonlinear dynamic analysis of nanobeam using a meshless method

  • Received : 2018.10.18
  • Accepted : 2019.07.10
  • Published : 2019.08.10

Abstract

In the present paper, the element free Galerkin (EFG) method is developed for geometrically nonlinear analysis of deep beams considering small scale effect. To interpret the behavior of structure at the nano scale, the higher-order gradient elasticity nonlocal theory is taken into account. The radial point interpolation method with high order of continuity is used to construct the shape functions. The nonlinear equation of motion is derived using the principle of the minimization of total potential energy based on total Lagrangian approach. The Newmark method with the small time steps is used to solve the time dependent equations. At each time step, the iterative Newton-Raphson technique is applied to minimize the residential forces caused by the nonlinearity of the equations. The effects of nonlocal parameter and aspect ratio on stiffness and dynamic parameters are discussed by numerical examples. This paper furnishes a ground to develop the EFG method for large deformation analysis of structures considering small scale effects.

Keywords

References

  1. Aifantis, E.C. (1999), "Strain gradient interpretation of size effects", In: Fracture Scaling, Springer, Dordrecht, pp. 299-314.
  2. Akgoz, B. and Civalek, O . (2011), "Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams", Int. J. Eng. Sci., 49(11), 1268-1280. https://doi.org/10.1016/j.ijengsci.2010.12.009
  3. Altan, B.S. and Aifantis, E.C. (1997), "On some aspects in the special theory of gradient elasticity", J. Mech. Behavior Mater., 8(3), 231-282. https://doi.org/10.1515/JMBM.1997.8.3.231
  4. Amanatidou, E. and Aravas, N. (2002), "Mixed finite element formulations of strain-gradient elasticity problems", Comput. Methods Appl. Mech. Eng., 191(15-16), 1723-1751. https://doi.org/10.1016/S0045-7825(01)00353-X
  5. Arash, B. and Ansari, R. (2010), "Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain", Physica E: Low-dimens. Syst. Nanostruct., 42(8), 2058-2064. https://doi.org/10.1016/j.physe.2010.03.028
  6. Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., Int. J., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479
  7. Askes, H. and Aifantis, E.C. (2002), "Numerical modeling of size effects with gradient elasticity-formulation, meshless discretization and examples", Int. J. Fract., 117(4), 347-358. https://doi.org/10.1023/A:1022225526483
  8. Belytschko, T., Gracie, R. and Ventura, G. (2009), "A review of extended/generalized finite element methods for material modeling", Model. Simul. Mater. Sci. Eng., 17(4), 043001. https://doi.org/10.1088/0965-0393/17/4/043001
  9. Cadek, M., Coleman, J.N., Ryan, K.P., Nicolosi, V., Bister, G., Fonseca, A. and Blau, W.J. (2004), "Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area", Nano Letters, 4(2), 353-356. https://doi.org/10.1021/nl035009o
  10. Chakraverty, S. and Behera, L. (2015), "Small scale effect on the vibration of non-uniform nanoplates", Struct. Eng. Mech., Int. J., 55(3), 495-510. https://doi.org/10.12989/sem.2015.55.3.495
  11. Chen, W.X., Tu, J.P., Wang, L.Y., Gan, H.Y., Xu, Z.D. and Zhang, X.B. (2003), "Tribological application of carbon nanotubes in a metal-based composite coating and composites", Carbon, 41(2), 215-222. https://doi.org/10.1016/S0008-6223(02)00265-8
  12. Chong, A.C.M., Yang, F., Lam, D.C. and Tong, P. (2001), "Torsion and bending of micron-scaled structures", J. Mater. Res., 16(4), 1052-1058. https://doi.org/10.1557/JMR.2001.0146
  13. Darabi, A. and Vosoughi, A.R. (2016), "A hybrid inverse method for small scale parameter estimation of FG nanobeams", Steel Compos. Struct., Int. J., 20(5), 1119-1131. https://doi.org/10.12989/scs.2016.20.5.1119
  14. Despotovic, N. (2018), "Stability and vibration of a nanoplate under body force using nonlocal elasticity theory", Acta Mechanica, 229(1), 273-284. https://doi.org/10.1007/s00707-017-1962-9
  15. Eringen, A.C. (1972a), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X
  16. Eringen, A.C. (1972b), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  17. Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026
  18. Ghavanloo, E. and Fazelzadeh, S.A. (2016), "Evaluation of nonlocal parameter for single-walled carbon nanotubes with arbitrary chirality", Meccanica, 51(1), 41-54. https://doi.org/10.1007/s11012-015-0195-z
  19. Gholami, R. and Ansari, R. (2016), "A most general strain gradient plate formulation for size-dependent geometrically nonlinear free vibration analysis of functionally graded shear deformable rectangular microplates", Nonlinear Dyn., 84(4), 2403-2422. https://doi.org/10.1007/s11071-016-2653-0
  20. Gu, Y., Wang, Q.X. and Lam, K.Y. (2007), "A meshless local Kriging method for large deformation analyses", Comput. Methods Appl. Mech. Eng., 196(9-12), 1673-1684. https://doi.org/10.1016/j.cma.2006.09.017
  21. Hosseini, S.M. (2018), "Analytical solution for nonlocal coupled thermoelasticity analysis in a heat-affected MEMS/NEMS beam resonator based on Green-Naghdi theory", Appl. Math. Model., 57, 21-36. https://doi.org/10.1016/j.apm.2017.12.034
  22. Hosseini, S.M. and Zhang, C. (2018a), "Coupled thermoelastic analysis of an FG multilayer graphene platelets-reinforced nanocomposite cylinder using meshless GFD method: A modified micromechanical model", Eng. Anal. Boundary Elem., 88, 80-92. https://doi.org/10.1016/j.enganabound.2017.12.010
  23. Hosseini, S.M. and Zhang, C. (2018b), "Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., Int. J., 27(3), 255-271. https://doi.org/10.12989/scs.2018.27.3.255
  24. Kiani, K. (2014), "A nonlocal meshless solution for flexural vibrations of double-walled carbon nanotubes", Appl. Math. Computat., 234, 557-578. https://doi.org/10.1016/j.amc.2014.01.015
  25. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  26. Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
  27. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method", Compos. Struct., 127, 245-259. https://doi.org/10.1016/j.compstruct.2015.03.019
  28. Liu, G.R. and Gu, Y.T. (2005), An introduction to meshfree methods and their programming, Springer Science & Business Media.
  29. Ma, Q. and Clarke, D.R. (1995), "Size dependent hardness of silver single crystals", J. Mater. Res., 10(4), 853-863. DOI: https://doi.org/10.1557/JMR.1995.0853
  30. Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Compos. Part B: Eng., 52, 84-92. https://doi.org/10.1016/j.compositesb.2013.03.046
  31. Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Archive Rational Mech. Anal., 16(1), 51-78. https://doi.org/10.1007/BF00248490
  32. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., Int. J., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415
  33. Nguyen, T.N., Kim, N.I. and Lee, J. (2017), "Static behavior of nonlocal Euler-Bernoulli beam model embedded in an elastic medium using mixed finite element formulation", Struct. Eng. Mech., Int. J., 63(2), 137-146. https://doi.org/10.12989/sem.2017.63.2.137
  34. Nikkar, A., Rouhi, S. and Ansari, R. (2017), "Finite element modeling of the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes", Struct. Eng. Mech., Int. J., 64(3), 329-337. https://doi.org/10.12989/sem.2017.64.3.329
  35. Panyatong, M., Chinnaboon, B. and Chucheepsakul, S. (2018), "Nonlinear bending analysis of nonlocal nanoplates with general shapes and boundary conditions by the boundary-only method", Eng. Anal. Boundary Elem., 87, 90-110. https://doi.org/10.1016/j.enganabound.2017.12.003
  36. Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Computat. Mater. Sci., 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040
  37. Polizzotto, C. (2001), "Nonlocal elasticity and related variational principles", Int. J. Solids Struct., 38(42-43), 7359-7380. https://doi.org/10.1016/S0020-7683(01)00039-7
  38. Poole, W.J., Ashby, M.F. and Fleck, N.A. (1996), "Micro-hardness of annealed and work-hardened copper polycrystal", Scripta Materialia, 34(4), 559-564. https://doi.org/10.1016/1359-6462(95)00524-2
  39. Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2015), "A meshless local Petrov-Galerkin method for nonlinear dynamic analyses of hyper-elastic FG thick hollow cylinder with Rayleigh damping", Acta Mechanica, 226(5), 1497-1513. https://doi.org/10.1007/s00707-014-1266-2
  40. Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., Int. J., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339
  41. Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020
  42. Schwartz, M., Niane, N.T. and Njiwa, R.K. (2012), "A simple solution method to 3D integral nonlocal elasticity: Isotropic-BEM coupled with strong form local radial point interpolation", Eng. Anal. Boundary Elem., 36(4), 606-612. https://doi.org/10.1016/j.enganabound.2011.10.004
  43. Sladek, J., Sladek, V., Hrcek, S. and Pan, E. (2017), "The nonlocal and gradient theories for a large deformation of piezoelectric nanoplates", Compos. Struct., 172, 119-129. https://doi.org/10.1016/j.compstruct.2017.03.080
  44. Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., Int. J., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755
  45. Toupin, R.A. (1964), "Theories of elasticity with couple-stress", Archive Rational Mech. Anal., 17(2), 85-112. https://doi.org/10.1007/BF00253050
  46. Wang, K.F., Wang, B.L. and Kitamura, T. (2016), "A review on the application of modified continuum models in modeling and simulation of nanostructures", Acta Mechanica Sinica, 32(1), 83-100. https://doi.org/10.1007/s10409-015-0508-4
  47. Wang, L., He, X., Sun, Y. and Liew, K.M. (2017a), "A mesh-free vibration analysis of strain gradient nano-beams", Eng. Anal. Bound. Elem., 84, 231-236. https://doi.org/10.1016/j.enganabound.2017.09.001
  48. Wang, Y., Li, F., Wang, Y. and Jing, X. (2017b), "Nonlinear responses and stability analysis of viscoelastic nanoplate resting on elastic matrix under 3: 1 internal resonances", Int. J. Mech. Sci., 128, 94-104. https://doi.org/10.1016/j.ijmecsci.2017.04.010
  49. Wang, Y., Li, F.M. and Wang, Y.Z. (2015a), "Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method", Chaos: An Interdiscipl. J. Nonlinear Sci., 25(6), 063108. https://doi.org/10.1063/1.4922299
  50. Wang, Y., Li, F.M. and Wang, Y.Z. (2015b), "Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory", Physica E: Low-dimens. Syst. Nanostruct., 67, 65-76. https://doi.org/10.1016/j.physe.2014.11.007
  51. Wang, Y.Z., Li, F.M. and Kishimoto, K. (2010), "Scale effects on the longitudinal wave propagation in nanoplates", Physica E: Low-dimens. Syst. Nanostruct., 42(5), 1356-1360. https://doi.org/10.1016/j.physe.2009.11.036
  52. Wang, Y., Li, F. and Shu, H. (2019), "Nonlocal nonlinear chaotic and homoclinic analysis of double layered forced viscoelastic nanoplates", Mech. Syst. Signal Process., 122, 537-554. https://doi.org/10.1016/j.ymssp.2018.12.041
  53. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  54. Yu, Y.J., Xue, Z.N., Li, C.L. and Tian, X.G. (2016), "Buckling of nanobeams under nonuniform temperature based on nonlocal thermoelasticity", Compos. Struct., 146, 108-113. https://doi.org/10.1016/j.compstruct.2016.03.014
  55. Yu, Y.J., Tian, X.G. and Liu, J. (2017), "Size-dependent damping of a nanobeam using nonlocal thermoelasticity: extension of Zener, Lifshitz, and Roukes' damping model", Acta Mechanica, 228(4), 1287-1302. https://doi.org/10.1007/s00707-016-1769-0
  56. Zhang, L.W. (2017), "An element-free based IMLS-Ritz method for buckling analysis of nanocomposite plates of polygonal planform", Eng. Anal. Boundary Elem., 77, 10-25. https://doi.org/10.1016/j.enganabound.2015.01.007
  57. Zhang, L.W. and Liew, K.M. (2015), "Large deflection analysis of FG-CNT reinforced composite skew plates resting on Pasternak foundations using an element-free approach", Compos. Struct., 132, 974-983. https://doi.org/10.1016/j.compstruct.2015.07.017
  58. Zhang, L.W. and Liew, K.M. (2016), "Postbuckling analysis of axially compressed CNT reinforced functionally graded composite plates resting on Pasternak foundations using an element-free approach", Compos. Struct., 138, 40-51. https://doi.org/10.1016/j.compstruct.2015.11.031
  59. Zhang, L.W. and Selim, B.A. (2017), "Vibration analysis of CNTreinforced thick laminated composite plates based on Reddy's higher-order shear deformation theory", Compos. Struct., 160, 689-705. https://doi.org/10.1016/j.compstruct.2016.10.102
  60. Zhang, L.W. and Xiao, L.N. (2017), "Mechanical behavior of laminated CNT-reinforced composite skew plates subjected to dynamic loading", Compos. Part B: Eng., 122, 219-230. https://doi.org/10.1016/j.compositesb.2017.03.041
  61. Zhang, L.W., Zhu, P. and Liew, K.M. (2014), "Thermal buckling of functionally graded plates using a local Kriging meshless method", Compos. Struct., 108, 472-492. https://doi.org/10.1016/j.compstruct.2013.09.043
  62. Zhang, L.W., Song, Z.G. and Liew, K.M. (2015a), "State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory", Compos. Struct., 134, 989-1003. https://doi.org/10.1016/j.compstruct.2015.08.138
  63. Zhang, L.W., Li, D.M. and Liew, K.M. (2015b), "An element-free computational framework for elastodynamic problems based on the IMLS-Ritz method", Eng. Anal. Boundary Elem., 54, 39-46. https://doi.org/10.1016/j.compstruct.2015.11.031
  64. Zhang, L.W., Liu, W.H. and Liew, K.M. (2016a), "Geometrically nonlinear large deformation analysis of triangular CNTreinforced composite plates", Int. J. Non-Linear Mech., 86, 122-132. https://doi.org/10.1016/j.ijnonlinmec.2016.08.004
  65. Zhang, L.W., Song, Z.G. and Liew, K.M. (2016b), "Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow", Comput. Methods Appl. Mech. Eng., 300, 427-441. https://doi.org/10.1016/j.cma.2015.11.029
  66. Zhang, Y., Zhang, L.W., Liew, K.M. and Yu, J.L. (2016c), "Buckling analysis of graphene sheets embedded in an elastic medium based on the kp-Ritz method and non-local elasticity theory", Eng. Anal. Boundary Elem., 70, 31-39. https://doi.org/10.1016/j.enganabound.2016.05.009
  67. Zhang, L.W., Liew, K.M. and Reddy, J.N. (2016d), "Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression", Comput. Methods Appl. Mech. Eng., 298, 1-28. https://doi.org/10.1016/j.cma.2015.09.016
  68. Zhang, L.W., Song, Z.G. and Liew, K.M. (2016e), "Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches", Compos. Part B: Eng., 85, 140-149. https://doi.org/10.1016/j.compositesb.2015.09.044
  69. Zhang, L.W., Song, Z.G., Qiao, P. and Liew, K.M. (2017), "Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads", Comput. Methods Appl. Mech. Eng., 313, 889-903. https://doi.org/10.1016/j.cma.2016.10.020
  70. Zhu, P., Zhang, L.W. and Liew, K.M. (2014), "Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation", Compos. Struct., 107, 298-314. https://doi.org/10.1016/j.compstruct.2013.08.001

Cited by

  1. Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.077