과제정보
연구 과제 주관 기관 : Ministry of Science and Higher Education
참고문헌
- Aliha, M.R.M., Heidari-Rarani, M., Shokrieh, M.M. and Ayatollahi, M.R. (2012), "Experimental determination of tensile strength and KIc of polymer concretes using semi-circular bend (SCB) specimens", Struct. Eng. Mech., 43(6), 823-833. https://doi.org/10.12989/sem.2012.43.6.823.
- Aliha, M.R.M., Linul, E., Bahmani, A. and Marsavina, L. (2018a), "Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I+III loading", Pol. Test. 67, 75-83. https://doi.org/10.1016/j.polymertesting.2018.02.015.
- Aliha, M.R.M., Razmi, A. and Mousavi, A. (2018b), "Fracture study of concrete composires with synthetic fibers additive under modes I and III using ENDB specimen", Constr. Build. Mater., 190, 612-622. https://doi.org/10.1016/j.conbuildmat.2018.09.149
- Berto, F., Ayatollahi M. and Marsavina, L. (2017), "Mixed mode fracture", Theor. Appl. Fract. Mech., 91, 1. https://doi.org/10.1016/j.tafmec.2017.05.012.
- Bhandari, P.K. and Sengupta, A. (2014), "Dynamic analysis of machine foundation", Int. J. Innov. Res. Scie. Eng. Technol., 3 (Special Issue 4), 169-176.
- Bhatia, K.G. (2011), Foundations for Industrial Machines: Handbook for Practising Engineers (Second Edition), D-CAD Publishers, New Delhi, India.
- Bicer, A. (2018), "Effect of fly ash particle size on thermal and mechanical properties of fly ash-cement composites", Therm. Sci. Eng. Progr., 8, 78-82. https://doi.org/10.1016/j.tsep.2018.07.014.
- Blaszczynski, T. (2011a), "Assessment of RC structures influencedby crude oil products", Arch. Civ. Mech. Eng., 11(1), 5-17. https://doi.org/10.1016/S1644-9665(12)60170-8.
- Blaszczynski, T. (2011b), "The influence of crude oil products on RC structure destruction", J. Civ. Eng. Manag., 17(1), 146-156. https://doi.org/10.3846/13923730.2011.561522.
- Chmielewski, T. and Zembaty, Z. (1998), Podstawy dynamiki budowli, Arkady, Warsaw.
- Craciun, E.M. (2008), "Energy criteria for crack propagation in prestresses elastic composites", Sol. Mech, Appl. 154, 193-237. https://doi.org/10.1007/978-1-4020-8772-1_7.
- Fakoor, M., Rafiee, R. and Zare, S. (2019), "Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials", Steel. Compos. Struct., 30(1), 1-12. https://doi.org/10.12989/scs.2019.30.1.001.
- Golaszewski, J. (2012), "Influence of cement properties on new generation superplasticizers performance", Constr. Build. Mater., 35, 586-596. https://doi.org/10.1016/j.conbuildmat.2012.04.070.
- Golewski, G.L. (2019a), "Measurement of fracture mechanics parameters of concrete containing fly ash thanks to use of Digital Image Correlation (DIC) method", Measurement, 135, 96-105. https://doi.org/10.1016/j.measurement.2018.11.032.
- Golewski, G.L. (2019b), "The influence of microcrack width on the mechanical parameters in concrete with the addition of fly ash: Consideration of technological and ecological benefits", Constr. Build. Mater., 197, 849-861. https://doi.org/10.1016/j.conbuildmat.2018.08.157.
- Golewski, G.L. (2018a), "An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives", Compos. Struct., 200, 515-520. https://doi.org/10.1016/j.compstruct.2018.05.144.
- Golewski, G.L. (2018b), "Effect of curing time on the fracture toughness of fly ash concrete composites", Compos. Struct., 185, 105-112. https://doi.org/10.1016/j.compstruct.2017.10.090.
- Golewski, G.L. (2018c), "Green concrete composite incorporating fly ash with high strength and fracture toughness", J. Clean. Prod., 172, 218-226. https://doi.org/10.1016/j.jclepro.2017.10.065.
- Golewski, G.L. (2018d), "Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA)", J. Hazard. Mater., 357, 298-304. https://doi.org/10.1016/j.jhazmat.2018.06.016.
- Golewski, G. L. (2017a), "Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading", Struct. Eng. Mech., 62(1), 1-9. https://doi.org/10.12989/sem.2017.62.1.001.
- Golewski, G.L. (2017b), "Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture", J. Civ. Eng. Manag, 23(5) 613-620. https://doi.org/10.3846/13923730.2016.1217923.
- Golewski, G.L. (2017c), "Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure", Mater. Charact., 134, 335-346. https://doi.org/10.1016/j.matchar.2017.11.008.
- Golewski, G.L. (2017d), "Generalized fracture toughness and compressive strength of sustainable concrete including low calcium fly ash", Materials, 10(12), 1393. https://doi.org/10.3390/ma10121393.
- Golewski, G.L. (2015), "Studies of natural radioactivity of concrete with siliceous fly ash addition", Cem. Wapno Beton, 2, 106-114.
- Golewski, G.L. and Sadowski, T. (2017), "The fracture toughness the KIIIc of concretes with F fly ash (FA) additive", Constr. Build. Mater., 143, 444-454. https://doi.org/10.1016/j.conbuildmat.2017.03.137.
- Golewski, G.L. and Sadowski, T. (2016a), "A study of mode III fracture toughness in young and mature concrete with fly ash additive", Sol. Stat. Phenom., 254, 120-125. https://doi.org/10.4028/www.scientific.net/SSP.254.120.
- Golewski, G.L. and Sadowski, T. (2016b), "Macroscopic evaluation of fracture processes in fly ash concrete", Sol. Stat. Phenom., 254, 188-193. https://doi.org/10.4028/www.scientific.net/SSP.254.188.
- Golewski, G.L. and Sadowski, T. (2014), "An analysis of shear fracture toughness KIIc and microstructure in concretes containing fly-ash", Constr. Build. Mater., 51, 207-214. https://doi.org/10.1016/j.conbuildmat.2013.10.044.
- Golewski, G.L. and Sadowski, T. (2012), "Experimental investigation and numerical modeling fracture processes under Mode II in concrete composites containing fly-ash additive at early age", Sol. Stat. Phenom.,188, 158-163. https://doi.org/10.4028/www.scientific.net/SSP.188.158.
- Golewski, G. and Sadowski, T. (2006), "Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates", Brittle Matrix Compos., 8, 537-546. https://doi.org/10.1533/9780857093080.537.
- Gorski, P., Stankiewicz, B. and Tatara, M. (2018), "Structural evaluation of all-GFRP cable-stayed footbridge after 20 years of service life", Steel. Compos. Struct., 29(4), 527-543. https://doi.org/10.12989/scs.2018.29.4.527.
- Gorzelanczyk, T., Hola J., Sadowski, L. and Schabowicz, K. (2016), "Non-destructive identification of cracks in unilaterally accessible massive concrete walls in hydroelectric power plant", Arch. Civ. Mech. Eng., 16(3), 413-421. https://doi.org/10.1016/j.acme.2016.02.009.
- Guan, J., Li, C., Wang, J., Qing, L., Song, Z. and Liu, Z. (2019), "Determination of fracture parameter and prediction of structural fracture using various concreto specimen types", Theor. Appl. Fract. Mech., 100, 114-127. https://doi.org/10.1016/j.tafmec.2019.01.008.
- Guodong, L., Jiangjiang, Y., Peng, C. and Zhengyi, R. (2018), "Experimental and numerical investigation on I-II mixed mode fracture of concrete based on the Monte Carlo random aggregate distribution", Constr. Build. Mater., 191, 523-534. https://doi.org/10.1016/j.conbuildmat.2018.09.195.
- Hola, J., Sadowski, L. and Schabowicz, K. (2011), "Nondestructive identification of delaminations in concrete floor toopings with acoustic methods", Autom. Constr., 20(7), 799-807. https://doi.org/10.1016/j.autcon.2011.02.002.
- Hu, J., Liang, H. and Lu, Y. (2018), "Behavior of steel-concrete corrosion-damaged RC columns subjected to eccentric load", Steel. Compos. Struct., 29(6), 689-701. https://doi.org/10.12989/scs.2018.29.6.689.
- Kameswara Rao, N.S.V. (2011), Foundation Design: Theory and Practice. Chapter 11 - Machine Foundations, John Wiley and Sons, Singapore.
- Kappos, A.J. (2002), Dynamic loading and design of structures, Spon Press, London and New York, USA.
- Kosior-Kazberuk, M. and Lelusz, M. (2007), "Strength development of concrete with fly ash addition", J. Civ. Eng. Manag., 13(2), 115-122. https://doi.org/10.3846/13923730.2007.9636427
- Kourehli, S.S., Ghadimi, S. and Ghadimi, R. (2018), "Crack identification in Timoshenko beam under moving mass using RELM", Steel. Compos. Struct., 28(3), 279-288. https://doi.org/10.12989/scs.2018.28.3.278.
- Lacki, P., Derlatka, A. and Kasza, P. (2018), "Comparison of steelconcrete composite column and steel column", Compos. Struct., 202, 82-88. https://doi.org/10.1016/j.compstruct.2017.11.055.
- Lee, H.-M., Lee, H-S., Min, S-h., Lim, S. and Singh, J.K. (2018), "Carbonation-induced corrosion initiation probability of rebars in concreto with/without finishing materials", Sustainability, 10(10), 3814. https://doi.org/10.3390/su10103814.
- Linul, E., Marsavina, L., Linul, P.A. and Kovacik, J. (2019), "Cryogenic and high temperature compressive properties of metal foam matrix composites", Compos. Struct., 209, 490-498. https://doi.org/10.1016/j.compstruct.2018.11.006.
- Linul, E., Movahedi, N. and Marsavina, L. (2017), "The temperature effect on the axial quasi-static compressive behavior of ex-situ aluminum foam-filled tubes", Compos. Struct., 180, 709-722. https://doi.org/10.1016/j.compstruct.2017.08.034.
- Lipinski, J. (1998), Fundamenty pod maszyny, Arkady, Warsaw.
- Marsavina, L., Berto, F., Negru, R., Serban, D.A. and Linul, E. (2017), "An engineering approach to predict mixed mode fracture of PUR foams based on ASED and micromechanical modelling", Theor. Appl. Fract. Mech. 91, 148-154. https://doi.org/10.1016/j.tafmec.2017.06.008.
- Marsavina, L., Constantinescu, D.M., Linul, E., Voiconi, T. and Apostol, D.A. (2015), "Shear and mode II fracture of PUR foams", Eng. Fail. Anal. 58, 465-476. https://doi.org/10.1016/j.engfailanal.2015.05.021.
- Mehta, P. (2013), "Analysis and design of machine foundation", Indn. J. Res., 3(5), 70-72.
- Meyer, Ch. (1998), Modelling and analysis of reinforced concrete structures for dynamic loading, Springer-verlag, Wien, New York, USA.
- Mirsayar, M.M., Berto, F., Aliha, M.R.M. and Park, P. (2016), "Strain-based criteria for mixed-mode fracture of polycrystalline graphite", Eng. Fract. Mech., 156, 114-123. https://doi.org/10.1016/j.engfracmech.2016.02.011.
- Nogueira, C.L. (2018), "A new method to test concrete tensile and shear strength with cylindrical specimens", ACI Mater. J., 115(6), 909-923. https://doi.org/10.14359/51706942.
- Owsiak, Z. and Grzmil, W. (2015), "The evaluation of the influence of mineral additives on the durability of selfcompacting concretes", KSCE J. Civ. Eng., 19(4), 1002-1008. https://doi.org/10.1007/s12205-013-0336-7.
- Prakash, S. and Puri, V.K. (2006), "Foundations for vibrating machines", J. Struct. Eng., April-May, 1-39.
- Prakash, S. and Puri, V.K. (1988), Foundations for machines: Analysis and Design (Series in Geotechnical Engineering), John Wiley and Sons, New York.
- Qing, L., Shi, X., Mu, R. and Cheng, Y. (2018), "Determining tensile strength of concrete based on experimental loads in fracture test", Eng. Fract. Mech., 202, 87-102. https://doi.org/10.1016/j.engfracmech.2018.09.017.
- Rafiee, R., Fakoor, M. and Hesamsadat, H. (2015), "The influence of production inconsistencies on the functional failure of GRP pipes", Steel. Compos. Struct., 19(6), 1369-1379. https://doi.org/10.12989/scs.2015.19.6.1369.
- Ren, J., Dang, F., Wang, H., Xue, Y. and Fang, J. (2018), "Enhancement mechanism of the dynamic strength of concrete based on the energy principle", Materials, 11(8), 1274. https://doi.org/10.3390/ma11081274.
- Sadowski, T. and Golewski, G.L. (2018), "A failure analysis of concrete composites incorporating fly ash during torsional loading", Compos. Struct., 183, 527-535. https://doi.org/10.1016/j.compstruct.2017.05.073.
- Savija, B. (2018), "Smart crack control in concrete through use of phase change materials (PCMs): A Review", Materials, 11(5), 654. https://doi.org/10.3390/ma11050654.
- Smarzewski, P. (2019), "Influence of basalt-polypropylene fibers on fracture properties of high performance concrete", Compos. Struct., 209, 23-33. https://doi.org/10.1016/j.compstruct.2018.10.070.
- Taheri-Behrooz, F., Aliha, M. R. M., Maroofi, M. and Hedizadeh, V. (2018), "Residual stresses measurement in the butt joint welded metals using FSW and TIG methods", Steel. Compos. Struct., 28(6), 759-766. https://doi.org/10.12989/scs.2018.28.6.759.
- Xiaoquan, C., Zhao, W., Liu, S., Xu, Y. and Bao, J. (2014), "Damage of scarf-repaired composite laminates subjected to low-velocity impacts", Steel. Compos. Struct., 17(2), 199-213. https://doi.org/10.12989/scs.2014.17.2.199.
- Xie, T. and Visintin, P. (2018), "A unified approach for mix design of concrete containing supplementary cementitious materials based on reactivity moduli", J. Clean. Prod., 203, 68-82. https://doi.org/10.1016/j.jclepro.2018.08.254.
- Yan, W.T., Han, B., Zhang, J.Q., Xie, H.B., Zhu, L. and Xue, Z.J. (2018), "Experimental study on creep behavior of fly ash concrete filled steel tube circular arches", Steel. Compos. Struct., 27(2), 185-192. https://doi.org/10.12989/scs.2018.27.2.185.
- Yuan, X., Li, R., Wang, J. and Yuan, W. (2016), "Dynamic numerical analysis of single-support modular bridge expansion joints", Steel. Compos. Struct., 22(1), 1-12. https://doi.org/10.12989/scs.2016.22.1.001.
- Zhang, P. and Li, Q. (2013), "Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume", Compos. Part B: Eng., 45, 1587-1594. https://doi.org/10.1016/j.compositesb.2012.10.006.
- Zhang, J., Fu, G.-Y., Yu, C.-J., Chen, B., Zhao, S.-X. and Li, S.-P. (2016), "Experimental behavior of circular flyash-concrete-filled steel tubular stub columns", Steel. Compos. Struct., 22(4), 821-835. https://doi.org/10.12989/scs.2016.22.4.821.
- Zhang, P., Ji-Xiang, G., Xiao-Bing, D., Tian-Hang, Z. and Juan, W. (2016), "Fracture behavior o fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275. https://doi.org/10.12989/sem.2016.59.2.261.
피인용 문헌
- Analysis of the crack propagation rules and regional damage characteristics of rock specimens vol.24, pp.3, 2019, https://doi.org/10.12989/gae.2021.24.3.215
- Flexural behavior of partially prefabricated partially encased composite beams vol.38, pp.6, 2019, https://doi.org/10.12989/scs.2021.38.6.705
- A coupled experimental and numerical simulation of concrete joints' behaviors in tunnel support using concrete specimens vol.28, pp.2, 2021, https://doi.org/10.12989/cac.2021.28.2.189
- Designing and experimental study of compact vibration isolator with quasi-zero stiffness vol.79, pp.4, 2021, https://doi.org/10.12989/sem.2021.79.4.415
- Study on Reduction Effect of Vibration Propagation due to Internal Explosion Using Composite Materials vol.15, pp.1, 2021, https://doi.org/10.1186/s40069-021-00467-8