참고문헌
- Barbero, E.J. (1999), Introduction to Composite Materials Design, Taylor and Francis, USA.
- Barkanov, E., Eglitis, E., Almeida, F., Bowering, M.C. and Watson, G. (2016), "Weight optimal design of lateral wing upper covers made of composite materials", Eng. Optimiz., 48(9), 1618-1637. https://doi.org/10.1080/0305215X.2015.1128422.
- Blasques, J.P. and Stolpe, M. (2011), "Maximum stiffness and minimum weight optimization of laminated composite beams using continuous fiber angles", Struct. Multidiscip. Optim., 43(4), 573-588. https://doi.org/10.1007/s00158-010-0592-9.
- Borri, A. and Speranzini, E. (1993), "Multicriteria optimization of laminated composite material structures", Meccanica, 28(3), 233-238. https://doi.org/10.1007/BF00989126.
- Correia, J.R., Bai, Y. and Keller, T. (2015), "A review of the fire behaviour of pultruded GFRP structural profiles for civil engineering applications", Compos. Struct., 127, 267-287. https://doi.org/10.1016/j.compstruct.2015.03.006.
- Craig, A.S. (2012), "Optimizing sandwich beam for strength and stiffness", J. Sand. Struct. Mater., 14, 573-595. https://doi.org/10.1177/1099636212449851.
- Ferreira, A.D.B.L., Novoa, P.R.O. and Marques, A.T. (2016), "Multifunctional Material Systems: A state-of-the-art review", Compos. Struct., 151, 3-35. https://doi.org/10.1016/j.compstruct.2016.01.028.
- Gillet, A., Francescato, P. and Saffre, P. (2010), "Single-and multiobjective optimization of composite structures: the influence of design variables", J. Compos. Mater., 44(4), 457-480. https://doi.org/10.1177/0021998309344931.
- Himmelblau, D.M. (1972), Applied Nonlinear Programming, McGraw-Hill, New York, USA.
- Hollaway, L.C. (2010), "A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties", Constr. Build. Mater., 24, 2419-2445. https://doi.org/10.1016/j.conbuildmat.2010.04.062.
- Houmat, A. (2018), "Optimal lay-up design of variable stiffness laminated composite plates by a layer-wise optimization technique", Eng. Optimiz., 50(2), 205-217. https://doi.org/10.1080/0305215X.2017.1307978.
- Jones, R.M. (1993), Mechanics of Composite Materials, Taylor and Francis, USA.
- Kalantari, M., Chensong, D. and Ian, J.D. (2017), "Effect of matrix voids, fibre misalignment and thickness variation on multi-objective robust optimization of carbon/glass fibre reinforced hybrid composites under flexural loading", Compos. B. Eng., 123,136-147. https://doi.org/10.1016/j.compositesb.2017.05.022.
- Kennedy, J. (1997), "The particle swarm: social adaptation of knowledge", Proceedings of the International Conference on Evolutionary Computation, Indianapolis, USA, October.
- Lakshmi, K.A. and Rao, R.M. (2013), "Multi-objective optimal design of laminated composite skirt using hybrid NSGA", Meccanica, 48(6), 1431-1450. https://doi.org/10.1007/s11012-012-9676-5.
- Liao, Y.S. and Chiou, C.Y. (2006), "Robust optimum designs of fiber-reinforced composites using constraints with sensitivity", J. Compos. Mater., 40(22), 2067-2081. https://doi.org/10.1177/0021998306061301.
- Liu, W., Butler, R. and Kim, H.A. (2008), "Optimization of composite stiffened panels subject to compression and lateral pressure using a bi-level approach", Struct. Multidiscip. Optim., 36(3), 235-245. https://doi.org/10.1007/s00158-007-0156-9.
- Marannano, G. and Mariotti, G.V. (2008), "Structural optimization and experimental analysis of composite material panels for naval use", Meccanica, 43(2), 251-262. https://doi.org/10.1007/s11012-008-9120-z.
- Nikbakt, S., Kamarian, S. and Shakeri, M. (2018), "A review on optimization of composite structures Part I: Laminated composites", Compos. Struct., 195, 158-185. https://doi.org/10.1016/j.compstruct.2018.03.063.
- Noor, A.K., Burton, W.S. and Bert, C.W. (1996), "Computational models for sandwich panels and shells", Appl. Mech. Rev., 49(3), 155-199. https://doi.org/10.1115/1.3101923.
- Peng, W., Chen, J., Wei, J. and Tu, W. (2010), "Optimal strength design for fiber-metal laminates and fiber-reinforced plastic laminates", J. Compos. Mater., 45(2), 237-254. https://doi.org/10.1177/0021998310373521.
- Rajasekaran, S. (2010), "Optimal laminate sequence of thin-walled composite beams of generic section using evolution strategies", Struct. Eng. Mech., 34(5), 597-609. https://doi.org/10.12989/sem.2010.34.5.597.
- Rao, A.R.M. and Arvind, N. (2007), "Optimal stacking sequence design of laminate composite structures using tabu embedded simulated annealing", Struct. Eng. Mech., 25(2), 239-268. https://doi.org/10.12989/sem.2007.25.2.239.
- Rao, A.R.M. and Lakshmi, K. (2012), "Optimal design of stiffened laminate composite cylinder using a hybrid SFL algorithm", J. Compos. Mater., 46(24), 3031-3055. https://doi.org/10.1177/0021998311435674.
- Sohouli, A., Yildiz, M. and Suleman, A. (2017), "Design optimization of thin-walled composite structures based on material and fiber orientation", Compos. Struct., 176, 1081-1095. https://doi.org/10.1016/j.compstruct.2017.06.030.
- Vinson, J.R. (2001), "Sandwich structures", Appl. Mech. Rev., 54(3), 201-214. https:/doi.org/10.1115/1.3097295.
- Vo-Duy, T., Duong-Gia, D., Ho-Huu,V., Vu-Do, H.C. and Nguyen-Thoi, T. (2017), "Multi-objective optimization of laminated composite beam structures using NSGA-II algorithm", Compos. Struct., 16, 498-509. https://doi.org/10.1016/j.compstruct.2017.02.038.
- Wang, D., Abdalla, M.M. and Zhang, W. (2017), "Buckling optimization design of curved stiffeners for grid-stiffened composite structures", Compos. Struct., 159, 656-666. https://doi.org/10.1016/j.compstruct.2016.10.013.
- Zenkert, D. (1995), An Introduction to Sandwich Construction, EMAS Publication, W Midlands, United Kingdom.