DOI QR코드

DOI QR Code

Size-dependent plastic buckling behavior of micro-beam structures by using conventional mechanism-based strain gradient plasticity

  • Darvishvand, Amer (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Zajkani, Asghar (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
  • Received : 2018.08.11
  • Accepted : 2019.04.01
  • Published : 2019.08.10

Abstract

Since the actuators with small- scale structures may be exposed to external reciprocal actions lead to create undesirable loads causing instability, the buckling behaviors of them are interested to make reliable or accurate actions. Therefore, the purpose of this paper is to analyze plastic buckling behavior of the micro beam structures by adopting a Conventional Mechanism-based Strain Gradient plasticity (CMSG) theory. The effect of length scale on critical force is considered for three types of boundary conditions, i.e. the simply supported, cantilever and clamped - simply supported micro beams. For each case, the stability equations of the buckling are calculated to obtain related critical forces. The constitutive equation involves work hardening phenomenon through defining an index of multiple plastic hardening exponent. In addition, the Euler-Bernoulli hypothesis is used for kinematic of deflection. Corresponding to each length scale and index of the plastic work hardening, the critical forces are determined to compare them together.

Keywords

References

  1. Acharya, A. and Beaudoin, A.J. (2000), "Grain-size effect in viscoplastic polycrystals at moderate strains", J. Mech. Phys. Solids, 48(10), 2213-2230. https://doi.org/10.1016/S0022-5096(00)00013-2.
  2. Aifantis, E.C. (1987), "The physics of plastic deformation", Int. J. Plast., 3(3), 211-247. https://doi.org/10.1016/0749-6419(87)90021-0.
  3. Aifantis, E.C. (2009), "Exploring the applicability of gradient elasticity to certain micro/nano reliability problems", Microsyst. Technol., 15(1 SPEC. ISS.), 109-115. https://doi.org/10.1007/s00542-008-0699-8.
  4. Arsenlis, A. (1999), "Crystallographic aspects of geometricallynecessary and statistically-stored dislocation density", 47(5), 1597-1611. https://doi.org/10.1016/S1359-6454(99)00020-8.
  5. Ban, H., Yao, Y., Chen, S. and Fang, D. (2017), "The coupling effect of size and damage in micro-scale metallic materials", Int. J. Plast., 95, 251-263. https://doi.org/10.1016/j.ijplas.2017.04.012.
  6. Ban, H., Yao, Y., Chen, S. and Fang, D. (2019), "A new constitutive model of micro-particle reinforced metal matrix composites with damage effects", Int. J. Mech. Sci., 152, 524-534. https://doi.org/10.1016/j.ijmecsci.2019.01.024.
  7. Challamel, N. and Wang, C.M. (2008), "The small length scale effect for a non-local cantilever beam: A paradox solved", Nanotechnology, 19, 1-7. https://doi.org/10.1088/0957-4484/19/34/345703.
  8. Chen, S.H. and Feng, B. (2011), "Size effect in micro-scale cantilever beam bending", Acta Mech., 219(3-4), 291-307. https://doi.org/10.1007/s00707-011-0461-7.
  9. Chen, S.H. and Wang, T.C. (2000), "New hardening law for strain gradient plasticity", Acta Mater., 48(16), 3997-4005. https://doi.org/10.1016/S1359-6454(00)00216-0.
  10. Cordill, M.J., Muppidi, T., Moody, N.R. and Bahr, D.F. (2004), "Effects of microstructure on the mechanical properties of copper films for high aspect ratio structures", Microsyst. Technol., 10(6-7), 451-455. https://doi.org/10.1007/s00542-004-0370-y.
  11. Darvishvand, A. and Zajkani, A. (2019a), "A new model for permanent flexural deflection of cantilever MEMS actuator by conventional mechanism-based strain gradient plasticity framework", Microsyst. Technol., 1-13. https://doi.org/10.1007/s00542-019-04337-y.
  12. Darvishvand, A. and Zajkani, A. (2019b), "Nonlinear plastic buckling analysis of micro-scale thin plates established on higher order mechanism-based strain gradient plasticity framework", Eur. J. Mech. - A/Solids., 77. https://doi.org/10.1016/j.euromechsol.2019.04.012.
  13. Fleck, N.A. and Hutchinson, J.W. (1997), Strain Gradient Plasticity, Academic Press, CA, USA.
  14. Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: Theory and experiment", Acta Metall. Mater., 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9.
  15. Fleck, N.A. and Willis, J.R. (2009), "A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier", J. Mech. Phys. Solids, 57(7), 1045-1057. https://doi.org/10.1016/j.jmps.2009.03.007.
  16. Gao, H., Huang, Y., Nix, W.D. and Hutchinson, J.W. (1999), "Mechanism-based strain gradient plasticity- I. Theory", J. Mech. Phys. Solids, 47(6), 1239-1263. https://doi.org/10.1016/S0022-5096(98)00103-3.
  17. Huang, Y., Gao, H., Nix, W.D. and Hutchinson, J.W. (2000), "Mechanism-based strain gradient plasticity-II. Analysis", J. Mech. Phys. Solids, 48(1), 99-128. https://doi.org/10.1016/S0022-5096(99)00022-8.
  18. Huang, Y., Qu, S., Hwang, K.C., Li, M. and Gao, H. (2004), "A conventional theory of mechanism-based strain gradient plasticity", Int. J. Plast., 20(4-5), 753-782. https://doi.org/10.1016/j.ijplas.2003.08.002.
  19. Idiart, M.I., Deshpande, V.S., Fleck, N.A. and Willis, J.R. (2009), "Size effects in the bending of thin foils", Int. J. Eng. Sci., 47(11-12), 1251-1264. https://doi.org/10.1016/j.ijengsci.2009.06.002.
  20. Jiang, H., Huang, Y., Zhuang, Z. and Hwang, K.C. (2001), "Fracture in mechanism-based strain gradient plasticity", J. Mech. Phys. Solids, 49(5), 979-993. https://doi.org/10.1016/S0022-5096(00)00070-3.
  21. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
  22. Liu, J., Wang, W., Zhao, Z. and Soh, A.K. (2017), "On elastic and plastic length scales in strain gradient plasticity", Struct. Eng. Mech., 61(2), 275-282. https://doi.org/10.12989/sem.2017.61.2.275.
  23. Lu, Y., Wang, Q., Zeng, X., Ding, W., Zhai, C. and Zhu, Y. (2000), "Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys", Mater. Sci. Eng. A, 278(1-2), 66-76. https://doi.org/10.1016/S0921-5093(99)00604-8.
  24. Lubarda, V.A. (2017), "European journal of mechanics A / solids on the analysis of pure bending of rigid-plastic beams in straingradient plasticity", Eur. J. Mech. / A Solids, 63, 43-52. https://doi.org/10.1016/j.euromechsol.2016.12.001.
  25. Mao, Y.Q., Ai, S.G., Fang, D.N., Fu, Y.M. and Chen, C.P. (2013), "Elasto-plastic analysis of micro FGM beam basing on mechanism-based strain gradient plasticity theory", Compos. Struct., 101, 168-179. https://doi.org/10.1016/j.compstruct.2013.01.027.
  26. McElhaney, K.W., Vlassak, J.J. and Nix, W.D. (1998), "Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments", J. Mater. Res., 13(5), 1300-1306. https://doi.org/10.1557/JMR.1998.0185.
  27. Nix, W.D. and Gao, H. (1998), "Indentation size effects in crystalline materials: A law for strain gradient plasticity", J. Mech. Phys. Solids, 46(3), 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0.
  28. Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng, 16, 2355-2359. https://doi.org/10.1088/0960-1317/16/11/015.
  29. Patel, B.N., Pandit, D. and Srinivasan, S.M. (2017), "Large elasoplastic deflection of micro-beams using strain gradient plasticity theory", Procedia Eng., 173, 1064-1070. https://doi.org/10.1016/j.proeng.2016.12.186.
  30. Shi, M.X., Huang, Y. and Hwang, K.C. (2000), "Plastic flow localization in MSG plasticity", Int. J. Mech. Sci., 42(11), 2115-2131. https://doi.org/10.1016/S0020-7403(00)00009-6
  31. Shi, Z.F., Huang, B., Tan, H., Huang, Y., Zhang, T.Y., Wu, P.D., Hwang, K.C. and Gao, H. (2008), "Determination of the microscale stress-strain curve and strain gradient effect from the micro-bend of ultra-thin beams", Int. J. Plast., 24(9), 1606-1624. https://doi.org/10.1016/j.ijplas.2007.12.007.
  32. Shrotriya, P., Allameh, S.M., Lou, J., Buchheit, T. and Soboyejo, W.O. (2003), "On the measurement of the plasticity length scale parameter in LIGA nickel foils", Mech. Mater., 35(3-6), 233-243. https://doi.org/10.1016/S0167-6636(02)00273-9.
  33. Stelmashenko, N.A., Walls, M.G., Brown, L.M. and Milman, Y.V. (1993), "Microindentations on W and Mo oridented single crystals: An STM study", Acta Met. Mater., 41(10), 2855-2865. https://doi.org/10.1016/0956-7151(93)90100-7.
  34. Stolken, J.S. and Evans, A.G. (1998), "A microbend test method for measuring the plasticity length scale", Acta Mater., 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0.
  35. Wang, W., Huang, Y., Hsia, K.J., Hu, K.X. and Chandra, A. (2003), "A study of microbend test by strain gradient plasticity", Int. J. Plast., 19(3), 365-382. https://doi.org/10.1016/S0749-6419(01)00066-3.
  36. Xiang, Y. and Vlassak, J.J. (2006), "Bauschinger and size effects in thin-film plasticity", Acta Mater., 54(20), 5449-5460. https://doi.org/10.1016/j.actamat.2006.06.059.
  37. Xue, Z., Huang, Y., Hwang, K.C. and Li, M. (2002a), "The influence of indenter tip radius on the micro-indentation hardness", J. Eng. Mater. Technol., 124(July 2002), 371. https://doi.org/10.1115/1.1480409.
  38. Xue, Z., Huang, Y. and Li, M. (2002b), "Particle size effect in metallic materials: A study by the theory of mechanism-based strain gradient plasticity", Acta Mater., 50(1), 149-160. https://doi.org/10.1016/S1359-6454(01)00325-1.

Cited by

  1. Strain gradient micromechanical modeling of substrate - supported crystalline microplates subjected to permanent in-plane and out-of-plane tractions vol.49, pp.7, 2021, https://doi.org/10.1080/15397734.2019.1705167