References
- Acharya, A. and Beaudoin, A.J. (2000), "Grain-size effect in viscoplastic polycrystals at moderate strains", J. Mech. Phys. Solids, 48(10), 2213-2230. https://doi.org/10.1016/S0022-5096(00)00013-2.
- Aifantis, E.C. (1987), "The physics of plastic deformation", Int. J. Plast., 3(3), 211-247. https://doi.org/10.1016/0749-6419(87)90021-0.
- Aifantis, E.C. (2009), "Exploring the applicability of gradient elasticity to certain micro/nano reliability problems", Microsyst. Technol., 15(1 SPEC. ISS.), 109-115. https://doi.org/10.1007/s00542-008-0699-8.
- Arsenlis, A. (1999), "Crystallographic aspects of geometricallynecessary and statistically-stored dislocation density", 47(5), 1597-1611. https://doi.org/10.1016/S1359-6454(99)00020-8.
- Ban, H., Yao, Y., Chen, S. and Fang, D. (2017), "The coupling effect of size and damage in micro-scale metallic materials", Int. J. Plast., 95, 251-263. https://doi.org/10.1016/j.ijplas.2017.04.012.
- Ban, H., Yao, Y., Chen, S. and Fang, D. (2019), "A new constitutive model of micro-particle reinforced metal matrix composites with damage effects", Int. J. Mech. Sci., 152, 524-534. https://doi.org/10.1016/j.ijmecsci.2019.01.024.
- Challamel, N. and Wang, C.M. (2008), "The small length scale effect for a non-local cantilever beam: A paradox solved", Nanotechnology, 19, 1-7. https://doi.org/10.1088/0957-4484/19/34/345703.
- Chen, S.H. and Feng, B. (2011), "Size effect in micro-scale cantilever beam bending", Acta Mech., 219(3-4), 291-307. https://doi.org/10.1007/s00707-011-0461-7.
- Chen, S.H. and Wang, T.C. (2000), "New hardening law for strain gradient plasticity", Acta Mater., 48(16), 3997-4005. https://doi.org/10.1016/S1359-6454(00)00216-0.
- Cordill, M.J., Muppidi, T., Moody, N.R. and Bahr, D.F. (2004), "Effects of microstructure on the mechanical properties of copper films for high aspect ratio structures", Microsyst. Technol., 10(6-7), 451-455. https://doi.org/10.1007/s00542-004-0370-y.
- Darvishvand, A. and Zajkani, A. (2019a), "A new model for permanent flexural deflection of cantilever MEMS actuator by conventional mechanism-based strain gradient plasticity framework", Microsyst. Technol., 1-13. https://doi.org/10.1007/s00542-019-04337-y.
- Darvishvand, A. and Zajkani, A. (2019b), "Nonlinear plastic buckling analysis of micro-scale thin plates established on higher order mechanism-based strain gradient plasticity framework", Eur. J. Mech. - A/Solids., 77. https://doi.org/10.1016/j.euromechsol.2019.04.012.
- Fleck, N.A. and Hutchinson, J.W. (1997), Strain Gradient Plasticity, Academic Press, CA, USA.
- Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: Theory and experiment", Acta Metall. Mater., 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9.
- Fleck, N.A. and Willis, J.R. (2009), "A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier", J. Mech. Phys. Solids, 57(7), 1045-1057. https://doi.org/10.1016/j.jmps.2009.03.007.
- Gao, H., Huang, Y., Nix, W.D. and Hutchinson, J.W. (1999), "Mechanism-based strain gradient plasticity- I. Theory", J. Mech. Phys. Solids, 47(6), 1239-1263. https://doi.org/10.1016/S0022-5096(98)00103-3.
- Huang, Y., Gao, H., Nix, W.D. and Hutchinson, J.W. (2000), "Mechanism-based strain gradient plasticity-II. Analysis", J. Mech. Phys. Solids, 48(1), 99-128. https://doi.org/10.1016/S0022-5096(99)00022-8.
- Huang, Y., Qu, S., Hwang, K.C., Li, M. and Gao, H. (2004), "A conventional theory of mechanism-based strain gradient plasticity", Int. J. Plast., 20(4-5), 753-782. https://doi.org/10.1016/j.ijplas.2003.08.002.
- Idiart, M.I., Deshpande, V.S., Fleck, N.A. and Willis, J.R. (2009), "Size effects in the bending of thin foils", Int. J. Eng. Sci., 47(11-12), 1251-1264. https://doi.org/10.1016/j.ijengsci.2009.06.002.
- Jiang, H., Huang, Y., Zhuang, Z. and Hwang, K.C. (2001), "Fracture in mechanism-based strain gradient plasticity", J. Mech. Phys. Solids, 49(5), 979-993. https://doi.org/10.1016/S0022-5096(00)00070-3.
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Liu, J., Wang, W., Zhao, Z. and Soh, A.K. (2017), "On elastic and plastic length scales in strain gradient plasticity", Struct. Eng. Mech., 61(2), 275-282. https://doi.org/10.12989/sem.2017.61.2.275.
- Lu, Y., Wang, Q., Zeng, X., Ding, W., Zhai, C. and Zhu, Y. (2000), "Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys", Mater. Sci. Eng. A, 278(1-2), 66-76. https://doi.org/10.1016/S0921-5093(99)00604-8.
- Lubarda, V.A. (2017), "European journal of mechanics A / solids on the analysis of pure bending of rigid-plastic beams in straingradient plasticity", Eur. J. Mech. / A Solids, 63, 43-52. https://doi.org/10.1016/j.euromechsol.2016.12.001.
- Mao, Y.Q., Ai, S.G., Fang, D.N., Fu, Y.M. and Chen, C.P. (2013), "Elasto-plastic analysis of micro FGM beam basing on mechanism-based strain gradient plasticity theory", Compos. Struct., 101, 168-179. https://doi.org/10.1016/j.compstruct.2013.01.027.
- McElhaney, K.W., Vlassak, J.J. and Nix, W.D. (1998), "Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments", J. Mater. Res., 13(5), 1300-1306. https://doi.org/10.1557/JMR.1998.0185.
- Nix, W.D. and Gao, H. (1998), "Indentation size effects in crystalline materials: A law for strain gradient plasticity", J. Mech. Phys. Solids, 46(3), 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0.
- Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng, 16, 2355-2359. https://doi.org/10.1088/0960-1317/16/11/015.
- Patel, B.N., Pandit, D. and Srinivasan, S.M. (2017), "Large elasoplastic deflection of micro-beams using strain gradient plasticity theory", Procedia Eng., 173, 1064-1070. https://doi.org/10.1016/j.proeng.2016.12.186.
- Shi, M.X., Huang, Y. and Hwang, K.C. (2000), "Plastic flow localization in MSG plasticity", Int. J. Mech. Sci., 42(11), 2115-2131. https://doi.org/10.1016/S0020-7403(00)00009-6
- Shi, Z.F., Huang, B., Tan, H., Huang, Y., Zhang, T.Y., Wu, P.D., Hwang, K.C. and Gao, H. (2008), "Determination of the microscale stress-strain curve and strain gradient effect from the micro-bend of ultra-thin beams", Int. J. Plast., 24(9), 1606-1624. https://doi.org/10.1016/j.ijplas.2007.12.007.
- Shrotriya, P., Allameh, S.M., Lou, J., Buchheit, T. and Soboyejo, W.O. (2003), "On the measurement of the plasticity length scale parameter in LIGA nickel foils", Mech. Mater., 35(3-6), 233-243. https://doi.org/10.1016/S0167-6636(02)00273-9.
- Stelmashenko, N.A., Walls, M.G., Brown, L.M. and Milman, Y.V. (1993), "Microindentations on W and Mo oridented single crystals: An STM study", Acta Met. Mater., 41(10), 2855-2865. https://doi.org/10.1016/0956-7151(93)90100-7.
- Stolken, J.S. and Evans, A.G. (1998), "A microbend test method for measuring the plasticity length scale", Acta Mater., 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0.
- Wang, W., Huang, Y., Hsia, K.J., Hu, K.X. and Chandra, A. (2003), "A study of microbend test by strain gradient plasticity", Int. J. Plast., 19(3), 365-382. https://doi.org/10.1016/S0749-6419(01)00066-3.
- Xiang, Y. and Vlassak, J.J. (2006), "Bauschinger and size effects in thin-film plasticity", Acta Mater., 54(20), 5449-5460. https://doi.org/10.1016/j.actamat.2006.06.059.
- Xue, Z., Huang, Y., Hwang, K.C. and Li, M. (2002a), "The influence of indenter tip radius on the micro-indentation hardness", J. Eng. Mater. Technol., 124(July 2002), 371. https://doi.org/10.1115/1.1480409.
- Xue, Z., Huang, Y. and Li, M. (2002b), "Particle size effect in metallic materials: A study by the theory of mechanism-based strain gradient plasticity", Acta Mater., 50(1), 149-160. https://doi.org/10.1016/S1359-6454(01)00325-1.
Cited by
- Strain gradient micromechanical modeling of substrate - supported crystalline microplates subjected to permanent in-plane and out-of-plane tractions vol.49, pp.7, 2021, https://doi.org/10.1080/15397734.2019.1705167