DOI QR코드

DOI QR Code

Study on Effects of Roll in Flight of a Precision Guided Missile for Subsytem Requirements Analysis

구성품 요구 성능 설정을 위한 정밀 유도무기의 비행 중 롤 영향성 연구

  • Received : 2019.02.01
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

The operation of the precision-guided missiles with seekers is becoming more and more dominant since the modern wars became geographically localized like anti-terror campaigns and civil wars. Imaging seekers are relatively low-price and applicable to various operational conditions. The image tracker, however, requires highly advanced method for the target tracking under harsh missile flight condition. Missile roll can reduce the tracking performance since it introduces big differences in imagery. The missile roll is inevitable because of the disturbance and flight control error. Consequently, the errors of the subsystems should be under control for the stable performance of the tracker and the whole system. But the performance prediction by some simple metric is almost impossible since the target signature and the tracker are highly nonlinear. We established M&S tool for a precision-guided missile with imaging seeker and analyzed the roll effects to tracking and system performance. Furthermore, we defined the specification of missile subsystems through error analysis to guarantee system performance.

현대전이 내전과 대테러전과 같은 국지전 양상으로 변화하면서, 탐색기를 포함한 정밀 유도무기의 운용 비중이 점점 증가하고 있다. 영상탐색기는 상대적으로 저가이며, 다양한 운용환경에 적용이 가능하다. 다만 유도무기에 적용되는 영상추적기술은 유도탄의 비행 환경 하에서 표적 추적을 수행해야하므로 상당히 고난이도의 기술이 요구된다. 그 중 유도탄의 롤은 다른 거동에 비해 탐색기 영상에 큰 변화를 주게 되어 영상 추적 성능을 크게 저하시킬 수 있다. 롤은 외란 및 비행 제어 오차로 항상 발생할 수밖에 없으나, 영상 추적 및 체계 성능에 영향을 주지 않는 수준을 판단하여 구성품의 오차 관리를 해야 한다. 하지만 표적의 영상 특성 및 영상 추적기의 높은 비선형성으로 단순한 기준으로 성능 예측을 한다는 것은 매우 어려운 일이다. 본 연구에서는 영상탐색기가 적용된 정밀유도무기의 M&S 환경을 구축하고, 유도탄의 롤 거동이 영상 추적 및 체계 성능에 미치는 영향을 분석하였다. 또한 오차 분석을 통해 유도무기 성능보장을 위해 요구되는 구성품의 규격을 도출하였다.

Keywords

SMROBX_2019_v28n2_131_f0001.png 이미지

Fig. 1. Concept of missile flight

SMROBX_2019_v28n2_131_f0002.png 이미지

Fig. 2. Image rotation due to missile roll

SMROBX_2019_v28n2_131_f0003.png 이미지

Fig. 3. Initial target lock-on image

SMROBX_2019_v28n2_131_f0004.png 이미지

Fig. 4. Tracking image just before target loss

SMROBX_2019_v28n2_131_f0005.png 이미지

Fig. 5. Tracking image at target loss

SMROBX_2019_v28n2_131_f0006.png 이미지

Fig. 6. Guidance error due to roll

SMROBX_2019_v28n2_131_f0007.png 이미지

Fig. 7. Hit & miss condition

SMROBX_2019_v28n2_131_f0008.png 이미지

Fig. 7. Side thrust alignment concept

SMROBX_2019_v28n2_131_f0009.png 이미지

Fig. 8. Thrust misalignment - hit probability

SMROBX_2019_v28n2_131_f0010.png 이미지

Fig. 9. Wing/fin misalignment - hit probability

Table 1. Target loss angle

SMROBX_2019_v28n2_131_t0001.png 이미지

References

  1. Lee, J.H., Lee, S.J. and Hong, J.Y., "Test abd evaluation trend and cost for the development of aircraft and guided missile(3)", Defense & Technology, Vol. 341, 34-49.
  2. Cho, K.C.(2012), "Enhancing the Efficiency and Reliability for M&S based Test and Evaluation System Development", Journal of the Korea Society for Simulation, Vol. 21, no. 3, 89-96. https://doi.org/10.9709/JKSS.2012.21.1.089
  3. Jo, K.H. et al.(2013), "Development of Test Scenario based on M&S for System Integration of Guided Missile", ICS 2013 Proceeding, 167-168.
  4. Ryu, S.M., Lee, S.Y. and Baek, C.H.(2013), "Guided Weapon Development Status and Road Map-Focused on Airborne Warfare", The Journal of Aerospace Industry, Vol. 77, 66-91.
  5. Mark V. A. et al. (2006), "Historical Cost Growth of Completed Weapon System Programs", RAND co. technical report.
  6. Richard P. H. (1995), "Precision Guided Munitions and the New Era of Warfare", Air Power Studies Centre, RAAF Fairbairn Australia.
  7. Lee, W.S.(1991), "Seeker Technology Status", Defense & Technology, Vol. 152, 76-81.
  8. Song, T.R.(1995), "Homing Guidance Technology", Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 23, no. 6, 178-182.
  9. Hong, T.G. et al.(1997), "A Study on Development of IR Missile Simulation Tool" Proceeding of 1997 IEEK Conference, Vol. 10, no. 1, 889-892.
  10. Moon, K.Y., Jeon, B.E. and Lee, J.W.(2010), "Homing Filter Signal and Covariance Managing Technique for RF Seeker", Proceeding of 2010 The Korean Society For Aeronautical And Space Sciences Conference, no. 1, 623-626.
  11. Oh, S.M.(2010), "Terminal Homing Guidance of Tactical Missiles with Strapdown Seekers Based on an Unscented Kalman Filter", Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 38, no. 3, 221-227. https://doi.org/10.5139/JKSAS.2010.38.3.221
  12. Park, S.S. et al.(2013), "Development of Engagement Simulation Program between Anti-ship Missile with IIR Seeker and Ship Defense System", Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 41, no. 5, 373-382. https://doi.org/10.5139/JKSAS.2013.41.5.373
  13. J. M. Catchart, A. D. Sheffer, Jr.(1991), "Generation and application of high-resolution infrared computer imagery", Opt. Eng. Vol. 30, No. 11, 1745-1755. https://doi.org/10.1117/12.56004
  14. C. Bates, J. Lucas, J. Robinson(2001), "The Javelin Integrated Flight Simulation", Int. Conference on Computational Science, 507-514.
  15. A. Morin(2001), "Simulation of infrared imaging seeking missiles", in Proc. of SPIE Vol. 4365, 46-57.
  16. O.A. Andrade(1986), "Sensitivity and Robustness Analysis for Sea-Skimming Missile", Master's thesis of Naval Postgraduate School.
  17. Jeong, D.G., Yun, H.S. and Park, J.H.(2018), "Study on Integrated-Flight Simulation Method Using CFT Imagery", Journal of the Korea Society for Simulation, Vol. 27, No. 1, 111-117. https://doi.org/10.9709/JKSS.2018.27.1.111