DOI QR코드

DOI QR Code

Comparative Evaluation of Hormones and Hormone-Like Molecule in Lineage Specification of Human Induced Pluripotent Stem Cells

  • Choi, Seon-A (Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • An, Ju-Hyun (Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Seung Hwan (Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Geun-Hui (Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yang, Hae-Jun (Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jeong, Pil-Soo (Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Cha, Jae-Jin (Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Sanghoon (Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Young-Ho (Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Song, Bong-Seok (Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Sim, Bo-Woong (Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Young-Hyun (National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Ji-Su (National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jin, Yeung Bae (National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Huh, Jae-Won (National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Sang-Rae (National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Jong-Hee (Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Sun-Uk (Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2018.12.24
  • Accepted : 2019.05.25
  • Published : 2019.07.31

Abstract

Background and Objectives: Proficient differentiation of human pluripotent stem cells (hPSCs) into specific lineages is required for applications in regenerative medicine. A growing amount of evidences had implicated hormones and hormone-like molecules as critical regulators of proliferation and lineage specification during in vivo development. Therefore, a deeper understanding of the hormones and hormone-like molecules involved in cell fate decisions is critical for efficient and controlled differentiation of hPSCs into specific lineages. Thus, we functionally and quantitatively compared the effects of diverse hormones (estradiol 17-β (E2), progesterone (P4), and dexamethasone (DM)) and a hormone-like molecule (retinoic acid (RA)) on the regulation of hematopoietic and neural lineage specification. Methods and Results: We used 10 nM E2, 3 μM P4, 10 nM DM, and 10 nM RA based on their functional in vivo developmental potential. The sex hormone E2 enhanced functional activity of hematopoietic progenitors compared to P4 and DM, whereas RA impaired hematopoietic differentiation. In addition, E2 increased CD34+ CD45+ cells with progenitor functions, even in the CD43- population, a well-known hemogenic marker. RA exhibited lineage-biased potential, preferentially committing hPSCs toward the neural lineage while restricting the hematopoietic fate decision. Conclusions: Our findings reveal unique cell fate potentials of E2 and RA treatment and provide valuable differentiation information that is essential for hPSC applications.

Keywords

Acknowledgement

This study was supported by grant from the KRIBB Research Initiative Program (KGM4251824), Republic of Korea.

References

  1. Zon LI. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 2008;453:306-313 https://doi.org/10.1038/nature07038
  2. Wahlster L, Daley GQ. Progress towards generation of human haematopoietic stem cells. Nat Cell Biol 2016;18:1111-1117 https://doi.org/10.1038/ncb3419
  3. Espin-Palazon R, Weijts B, Mulero V, Traver D. Proinflammatory signals as fuel for the fire of hematopoietic stem cell emergence. Trends Cell Biol 2018;28:58-66 https://doi.org/10.1016/j.tcb.2017.08.003
  4. Nakada D, Oguro H, Levi BP, Ryan N, Kitano A, Saitoh Y, Takeichi M, Wendt GR, Morrison SJ. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature 2014;505:555-558 https://doi.org/10.1038/nature12932
  5. Varshney MK, Inzunza J, Lupu D, Ganapathy V, Antonson P, Ruegg J, Nalvarte I, Gustafsson JA. Role of estrogen receptor beta in neural differentiation of mouse embryonic stem cells. Proc Natl Acad Sci U S A 2017;114:E10428-E10437 https://doi.org/10.1073/pnas.1714094114
  6. Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL, Stingl J, Waterhouse PD, Khokha R. Progesterone induces adult mammary stem cell expansion. Nature 2010;465:803-807 https://doi.org/10.1038/nature09091
  7. Canciello A, Russo V, Berardinelli P, Bernabo N, Muttini A, Mattioli M, Barboni B. Progesterone prevents epithelial-mesenchymal transition of ovine amniotic epithelial cells and enhances their immunomodulatory properties. Sci Rep 2017;7:3761 https://doi.org/10.1038/s41598-017-03908-1
  8. Nurnberg E, Horschitz S, Schloss P, Meyer-Lindenberg A. Basal glucocorticoid receptor activation induces proliferation and inhibits neuronal differentiation of human induced pluripotent stem cell-derived neuronal precursor cells. J Steroid Biochem Mol Biol 2018;182:119-126 https://doi.org/10.1016/j.jsbmb.2018.04.017
  9. Narla A, Dutt S, McAuley JR, Al-Shahrour F, Hurst S, McConkey M, Neuberg D, Ebert BL. Dexamethasone and lenalidomide have distinct functional effects on erythropoiesis. Blood 2011;118:2296-2304
  10. Rhinn M, Dolle P. Retinoic acid signalling during development. Development 2012;139:843-858 https://doi.org/10.1242/dev.065938
  11. Tagliaferri D, De Angelis MT, Russo NA, Marotta M, Ceccarelli M, Del Vecchio L, De Felice M, Falco G. Retinoic acid specifically enhances embryonic stem cell metastate marked by Zscan4. PLoS One 2016;11:e0147683 https://doi.org/10.1371/journal.pone.0147683
  12. Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 2007;8:755-765 https://doi.org/10.1038/nrn2212
  13. Addae C, Yi X, Gernapudi R, Cheng H, Musto A, Martinez-Ceballos E. All-trans-retinoid acid induces the differentiation of encapsulated mouse embryonic stem cells into GABAergic neurons. Differentiation 2012;83:233-241 https://doi.org/10.1016/j.diff.2012.03.001
  14. Gupta S, Sivalingam D, Hain S, Makkar C, Sosa E, Clark A, Butler SJ. Deriving dorsal spinal sensory interneurons from human pluripotent stem cells. Stem Cell Reports 2018;10:390-405 https://doi.org/10.1016/j.stemcr.2017.12.012
  15. Podlesny-Drabiniok A, Sobska J, de Lera AR, Golembiowska K, Kaminska K, Dolle P, Cebrat M, Krezel W. Distinct retinoic acid receptor (RAR) isotypes control differentiation of embryonal carcinoma cells to dopaminergic or striatopallidal medium spiny neurons. Sci Rep 2017;7:13671 https://doi.org/10.1038/s41598-017-13826-x
  16. Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L, Thalheimer FB, Pastor-Flores D, Roma LP, Renders S, Zeisberger P, Przybylla A, Schonberger K, Scognamiglio R, Altamura S, Florian CM, Fawaz M, Vonficht D, Tesio M, Collier P, Pavlinic D, Geiger H, Schroeder T, Benes V, Dick TP, Rieger MA, Stegle O, Trumpp A. Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 2017;169: 807-823.e19 https://doi.org/10.1016/j.cell.2017.04.018
  17. Collins SJ. The role of retinoids and retinoic acid receptors in normal hematopoiesis. Leukemia 2002;16:1896-1905 https://doi.org/10.1038/sj.leu.2402718
  18. Ronn RE, Guibentif C, Moraghebi R, Chaves P, Saxena S, Garcia B, Woods NB. Retinoic acid regulates hematopoietic development from human pluripotent stem cells. Stem Cell Reports 2015;4:269-281 https://doi.org/10.1016/j.stemcr.2015.01.009
  19. Lee JH, Lee JB, Shapovalova Z, Fiebig-Comyn A, Mitchell RR, Laronde S, Szabo E, Benoit YD, Bhatia M. Somatic transcriptome priming gates lineage-specific differentiation potential of human-induced pluripotent stem cell states. Nat Commun 2014;5:5605 https://doi.org/10.1038/ncomms6605
  20. Lee JH, Salci KR, Reid JC, Orlando L, Tanasijevic B, Shapovalova Z, Bhatia M. Brief report: human acute myeloid leukemia reprogramming to pluripotency is a rare event and selects for patient hematopoietic cells devoid of leukemic mutations. Stem Cells 2017;35:2095-2102 https://doi.org/10.1002/stem.2655
  21. Angelos MG, Abrahante JE, Blum RH, Kaufman DS. Single cell resolution of human hematoendothelial cells defines transcriptional signatures of hemogenic endothelium. Stem Cells 2018;36:206-217 https://doi.org/10.1002/stem.2739
  22. Vo LT, Kinney MA, Liu X, Zhang Y, Barragan J, Sousa PM, Jha DK, Han A, Cesana M, Shao Z, North TE, Orkin SH, Doulatov S, Xu J, Daley GQ. Regulation of embryonic haematopoietic multipotency by EZH1. Nature 2018;553: 506-510 https://doi.org/10.1038/nature25435
  23. Vodyanik MA, Thomson JA, Slukvin II. Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood 2006;108: 2095-2105 https://doi.org/10.1182/blood-2006-02-003327
  24. Illing A, Liu P, Ostermay S, Schilling A, de Haan G, Krust A, Amling M, Chambon P, Schinke T, Tuckermann JP. Estradiol increases hematopoietic stem and progenitor cells independent of its actions on bone. Haematologica 2012;97: 1131-1135 https://doi.org/10.3324/haematol.2011.052456
  25. Kim HR, Lee JH, Heo HR, Yang SR, Ha KS, Park WS, Han ET, Song H, Hong SH. Improved hematopoietic differentiation of human pluripotent stem cells via estrogen receptor signaling pathway. Cell Biosci 2016;6:50 https://doi.org/10.1186/s13578-016-0111-9
  26. Hong SH, Nah HY, Lee YJ, Lee JW, Park JH, Kim SJ, Lee JB, Yoon HS, Kim CH. Expression of estrogen receptor-alpha and -beta, glucocorticoid receptor, and progesterone receptor genes in human embryonic stem cells and embryoid bodies. Mol Cells 2004;18:320-325
  27. Baud O, Verney C, Evrard P, Gressens P. Injectable dexamethasone administration enhances cortical GABAergic neuronal differentiation in a novel model of postnatal steroid therapy in mice. Pediatr Res 2005;57:149-156 https://doi.org/10.1203/01.PDR.0000148069.03855.C4
  28. Spreer A, Gerber J, Hanssen M, Schindler S, Hermann C, Lange P, Eiffert H, Nau R. Dexamethasone increases hippocampal neuronal apoptosis in a rabbit model of Escherichia coli meningitis. Pediatr Res 2006;60:210-215 https://doi.org/10.1203/01.pdr.0000227553.47378.9f
  29. Yu C, Liu Y, Miao Z, Yin M, Lu W, Lv Y, Ding M, Deng H. Retinoic acid enhances the generation of hematopoietic progenitors from human embryonic stem cell-derived hemato-vascular precursors. Blood 2010;116:4786-4794
  30. Chanda B, Ditadi A, Iscove NN, Keller G. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell 2013;155:215-227 https://doi.org/10.1016/j.cell.2013.08.055
  31. Halilagic A, Ribes V, Ghyselinck NB, Zile MH, Dolle P, Studer M. Retinoids control anterior and dorsal properties in the developing forebrain. Dev Biol 2007;303:362-375 https://doi.org/10.1016/j.ydbio.2006.11.021
  32. Uehara M, Yashiro K, Mamiya S, Nishino J, Chambon P, Dolle P, Sakai Y. CYP26A1 and CYP26C1 cooperatively regulate anterior-posterior patterning of the developing brain and the production of migratory cranial neural crest cells in the mouse. Dev Biol 2007;302:399-411 https://doi.org/10.1016/j.ydbio.2006.09.045