DOI QR코드

DOI QR Code

Maintenance of hPSCs under Xeno-Free and Chemically Defined Culture Conditions

  • Lim, Jung Jin (Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University) ;
  • Kim, Hyung Joon (Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University) ;
  • Rhie, Byung-ho (Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University) ;
  • Lee, Man Ryul (Soonchunhyang Institute of Medi-bioscience, Soonchunhyang University) ;
  • Choi, Myeong Jun (1st Research Center, Axceso Biopharma Co., Ltd.) ;
  • Hong, Seok-Ho (Department of Internal Medicine, School of Medicine, Kangwon National University) ;
  • Kim, Kye-Seong (Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University)
  • Received : 2019.07.19
  • Accepted : 2019.09.16
  • Published : 2019.11.30

Abstract

Previously, the majority of human embryonic stem cells and human induced pluripotent stem cells have been derived on feeder layers and chemically undefined medium. Those media components related to feeder cells, or animal products, often greatly affect the consistency of the cell culture. There are clear advantages of a defined, xeno-free, and feeder-free culture system for human pluripotent stem cells (hPSCs) cultures, since consistency in the formulations prevents lot-to-lot variability. Eliminating all non-human components reduces health risks for downstream applications, and those environments reduce potential immunological reactions from stem cells. Therefore, development of feeder-free hPSCs culture systems has been an important focus of hPSCs research. Recently, researchers have established a variety of culture systems in a defined combination, xeno-free matrix and medium that supports the growth and differentiation of hPSCs. Here we described detailed hPSCs culture methods under feeder-free and chemically defined conditions using vitronetin and TeSR-E8 medium including supplement bioactive lysophospholipid for promoting hPSCs proliferation and maintaining stemness.

Keywords

Acknowledgement

This research was supported by a grant from the Korea Centers for Disease Control and Prevention (2017ER610300) and the Bio and Medical Technology Development Program (2017M3A9B3061830) of the National Research Foundation (NRF). We are also grateful to Axceso Biopharma Co., Ltd. for providing cP1P and for excellent technical assistance.

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-1147 https://doi.org/10.1126/science.282.5391.1145
  2. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-1920 https://doi.org/10.1126/science.1151526
  3. Dakhore S, Nayer B, Hasegawa K. Human pluripotent stem cell culture: current status, challenges, and advancement. Stem Cells Int 2018;2018:7396905
  4. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001;19:971-974 https://doi.org/10.1038/nbt1001-971
  5. Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 2002;20:933-936 https://doi.org/10.1038/nbt726
  6. Richards M, Tan S, Fong CY, Biswas A, Chan WK, Bongso A. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 2003;21:546-556 https://doi.org/10.1634/stemcells.21-5-546
  7. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006;24:185-187 https://doi.org/10.1038/nbt1177
  8. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA. Chemically defined conditions for human iPSC derivation and culture. Nat Methods 2011;8:424-429 https://doi.org/10.1038/nmeth.1593
  9. Yasuda SY, Ikeda T, Shahsavarani H, Yoshida N, Nayer B, Hino M, Sharma NV, Suemori H, Hasegawa K. Chemically defined and growth-factor-free culture system for the expansion and derivation of human pluripotent stem cells Nat Biomed Eng 2018;2:173-182 https://doi.org/10.1038/s41551-018-0200-7
  10. Phadnis SM, Loewke NO, Dimov IK, Pai S, Amwake CE, Solgaard O, Baer TM, Chen B, Pera RAR. Dynamic and social behaviors of human pluripotent stem cells. Sci Rep 2015;5:14209 https://doi.org/10.1038/srep14209
  11. Jacobs K, Zambelli F, Mertzanidou A, Smolders I, Geens M, Nguyen HT, Barbe L, Sermon K, Spits C. Higher-density culture in human embryonic stem cells results in DNA damage and genome instability. Stem Cell Reports 2016;6:330-341 https://doi.org/10.1016/j.stemcr.2016.01.015
  12. Hongisto H, Vuoristo S, Mikhailova A, Suuronen R, Virtanen I, Otonkoski T, Skottman H. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem Cell Res 2012;8:97-108 https://doi.org/10.1016/j.scr.2011.08.005
  13. Inzunza J, Gertow K, Stromberg MA, Matilainen E, Blennow E, Skottman H, Wolbank S, Ahrlund-Richter L, Hovatta O. Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells 2005;23:544-549 https://doi.org/10.1634/stemcells.2004-0201
  14. Viswanathan P, Gaskell T, Moens N, Culley OJ, Hansen D, Gervasio MK, Yeap YJ, Danovi D. Human pluripotent stem cells on artificial microenvironments: a high content perspective. Front Pharmacol 2014;5:150
  15. Clause KC, Barker TH. Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol 2013;24:830-833 https://doi.org/10.1016/j.copbio.2013.04.011
  16. Kefalides NA. Structure and biosynthesis of basement membranes. Int Rev Connect Tissue Res 1973;6:63-104 https://doi.org/10.1016/B978-0-12-363706-2.50008-8
  17. Timpl R, Rohde H, Risteli L, Ott U, Robey PG, Martin GR. Laminin. Methods Enzymol 1982;82 Pt A:831-838 https://doi.org/10.1016/0076-6879(82)82104-6
  18. Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR. Laminin--a glycoprotein from basement membranes. J Biol Chem 1979;254:9933-9937 https://doi.org/10.1016/S0021-9258(19)83607-4
  19. Chung AE, Jaffe R, Freeman IL, Vergnes JP, Braginski JE, Carlin B. Properties of a basement membrane-related glycoprotein synthesized in culture by a mouse embryonal carcinoma-derived cell line. Cell 1979;16:277-287 https://doi.org/10.1016/0092-8674(79)90005-9
  20. Hassell JR, Robey PG, Barrach HJ, Wilczek J, Rennard SI, Martin GR. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci U S A 1980;77:4494-4498 https://doi.org/10.1073/pnas.77.8.4494
  21. Carlin B, Jaffe R, Bender B, Chung AE. Entactin, a novel basal lamina-associated sulfated glycoprotein. J Biol Chem 1981;256:5209-5214 https://doi.org/10.1016/S0021-9258(19)69388-9
  22. Cooper AR, MacQueen HA. Subunits of laminin are differentially synthesized in mouse eggs and early embryos. Dev Biol 1983;96:467-471 https://doi.org/10.1016/0012-1606(83)90183-5
  23. Ekblom P, Vestweber D, Kemler R. Cell-matrix interactions and cell adhesion development. Annu Rev Cell Biol 1986;2:27-47 https://doi.org/10.1146/annurev.cb.02.110186.000331
  24. Hierck BP, Thorsteinsdottir S, Niessen CM, Freund E, Iperen LV, Feyen A, Hogervorst F, Poelmann RE, Mummery CL, Sonnenberg A. Variants of the alpha 6 beta 1 laminin receptor in early murine development: distribution, molecular cloning and chromosomal localization of the mouse integrin alpha 6 subunit. Cell Adhes Commun 1993;1:33-53 https://doi.org/10.3109/15419069309095680
  25. Cooper HM, Tamura RN, Quaranta V. The major laminin receptor of mouse embryonic stem cells is a novel isoform of the alpha 6 beta 1 integrin. J Cell Biol 1991;115:843-850 https://doi.org/10.1083/jcb.115.3.843
  26. Kleinman HK, McGarvey ML, Liotta LA, Robey PG, Tryggvason K, Martin GR. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 1982;21:6188-6193 https://doi.org/10.1021/bi00267a025
  27. Kleinman HK, McGarvey ML, Hassell JR, Martin GR. Formation of a supramolecular complex is involved in the reconstitution of basement membrane components. Biochemistry 1983;22:4969-4974 https://doi.org/10.1021/bi00290a014
  28. Mackay AR, Gomez DE, Cottam DW, Rees RC, Nason AM, Thorgeirsson UP. Identification of the 72-kDa (MMP-2) and 92-kDa (MMP-9) gelatinase/type IV collagenase in preparations of laminin and Matrigel. Biotechniques 1993;15:1048-1051
  29. Vukicevic S, Kleinman HK, Luyten FP, Roberts AB, Roche NS, Reddi AH. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res 1992;202:1-8 https://doi.org/10.1016/0014-4827(92)90397-Q
  30. Borg TK. It's the matrix! ECM, proteases, and cancer. Am J Pathol 2004;164:1141-1142 https://doi.org/10.1016/S0002-9440(10)63201-4
  31. Li J, Bardy J, Yap LY, Chen A, Nurcombe V, Cool SM, Oh SK, Birch WR. Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells. Biointerphases 2010;5:FA132-FA142 https://doi.org/10.1116/1.3525804
  32. Doolittle JM, Gomez SM. Structural similarity-based predictions of protein interactions between HIV-1 and Homo sapiens. Virol J 2010;7:82 https://doi.org/10.1186/1743-422X-7-82
  33. Juliano RL, Varner JA. Adhesion molecules in cancer: the role of integrins. Curr Opin Cell Biol 1993;5:812-818 https://doi.org/10.1016/0955-0674(93)90030-T
  34. Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, Lebrin F, Kats P, Hochstenbach R, Passier R, Sonnenberg A, Mummery CL. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 2008;26:2257-2265 https://doi.org/10.1634/stemcells.2008-0291
  35. Pulido D, Hussain SA, Hohenester E. Crystal structure of the heterotrimeric integrin-binding region of laminin-111. Structure 2017;25:530-535 https://doi.org/10.1016/j.str.2017.01.002
  36. Chen KG, Mallon BS, McKay RD, Robey PG. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 2014;14:13-26 https://doi.org/10.1016/j.stem.2013.12.005
  37. Li Y, Powell S, Brunette E, Lebkowski J, Mandalam R. Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol Bioeng 2005;91:688-698 https://doi.org/10.1002/bit.20536
  38. Domogatskaya A, Rodin S, Boutaud A, Tryggvason K. Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro. Stem Cells 2008;26:2800-2809 https://doi.org/10.1634/stemcells.2007-0389
  39. Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 2010;28:611-615 https://doi.org/10.1038/nbt.1620
  40. Rodin S, Antonsson L, Hovatta O, Tryggvason K. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions. Nat Protoc 2014;9:2354-2368 https://doi.org/10.1038/nprot.2014.159
  41. Villa-Diaz LG, Kim JK, Laperle A, Palecek SP, Krebsbach PH. Inhibition of focal adhesion kinase signaling by integrin α6β1 supports human pluripotent stem cell self-renewal. Stem Cells 2016;34:1753-1764 https://doi.org/10.1002/stem.2349
  42. Pyne S, Pyne NJ. Sphingosine 1-phosphate signalling and termination at lipid phosphate receptors. Biochim Biophys Acta 2002;1582:121-131 https://doi.org/10.1016/S1388-1981(02)00146-4
  43. Spiegel S, Milstien S. Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 2002;277:25851-28584 https://doi.org/10.1074/jbc.R200007200
  44. Draper JS, Fox V. Human embryonic stem cells: multi-lineage differentiation and mechanisms of self-renewal. Arch Med Res 2003;34:558-564 https://doi.org/10.1016/j.arcmed.2003.08.006
  45. Inniss K, Moore H. Mediation of apoptosis and proliferation of human embryonic stem cells by sphingosine-1-phosphate. Stem Cells Dev 2006;15:789-796 https://doi.org/10.1089/scd.2006.15.789
  46. Kim MK, Park KS, Lee H, Kim YD, Yun J, Bae YS. Phytosphingosine-1-phosphate stimulates chemotactic migration of L2071 mouse fibroblasts via pertussis toxin-sensitive G-proteins. Exp Mol Med 2007;39:185-194 https://doi.org/10.1038/emm.2007.21
  47. Pata MO, Hannun YA, Ng CK. Plant sphingolipids: decoding the enigma of the Sphinx. New Phytol 2010;185:611-630 https://doi.org/10.1111/j.1469-8137.2009.03123.x

Cited by

  1. Induction and Maturation of Hepatocyte-Like Cells In Vitro: Focus on Technological Advances and Challenges vol.9, 2019, https://doi.org/10.3389/fcell.2021.765980
  2. Bioactive Lipid O-cyclic phytosphingosine-1-phosphate Promotes Differentiation of Human Embryonic Stem Cells into Cardiomyocytes via ALK3/BMPR Signaling vol.22, pp.13, 2021, https://doi.org/10.3390/ijms22137015
  3. Advances in generating HLA-Universal platelets for transfusion medicine vol.14, 2019, https://doi.org/10.1016/j.regen.2021.100053