DOI QR코드

DOI QR Code

An Experimental Study on Radiation/Convection Hybrid Air-Conditioner

복사-대류 겸용 하이브리드 냉방기에 대한 실험 연구

  • Kim, Nae-Hyun (Department of Mechanical Engineering, Incheon National University)
  • Received : 2019.03.18
  • Accepted : 2019.06.07
  • Published : 2019.06.30

Abstract

Radiation cooling has used ceilings or floors as cooling surfaces. In such cases, to avoid moisture condensation on the surface, the surface temperature needs be higher than the dew point temperature or an additional dehumidifier is added. In this study, with a goal for residential application, intentional moisture condensation on the cooling surface was attempted, which increased the cooling capacity and improved the indoor comfortness. This method included two separate refrigeration cycles - convection-type dehumidifying cycle and the panel cooling cycle. Test results on the panel cooling cycle showed that, at the standard outdoor ($35^{\circ}C/24^{\circ}C$) and indoor ($27^{\circ}C/19.5^{\circ}C$) condition, the refrigerant flow rate was 8.8 kg/h, condensation temperature was $51^{\circ}C$, evaporation temperature was $8.8^{\circ}C$, cooling capacity was 376 W and COP was 1.75. Furthermore, the panel temperature was uniform within $1^{\circ}C$ (between $13^{\circ}C$ and $14^{\circ}C$). As the relative humidity decreased, the cooling capacity decreased. However, the power consumption remained approximately constant. In the convection-type dehumidification cycle, the refrigerant flow rate was 21.1 kg/h, condensation temperature was $61^{\circ}C$, evaporation temperature was $5.0^{\circ}C$, cooling capacity was 949 W and COP was 2.11 at the standard air condition. When both the radiation panel cooling and the dehumidification cycle operated simultaneously, the cooling capacity of the radiation panel cycle was 333 W and that of the dehumidification cycle was 894 W, and the COP was 1.89. As the fan flow rate decreased, both the cooling capacity of the radiation panel and the dehumidification cycle decreased, with that of the dehumidification cycle decreasing at a higher rate. Finally, a possible control logic depending on the change of the cooling load was proposed based on the results of the present study.

그간 복사 냉방은 천정이나 바닥면을 냉각 표면으로 활용하기 때문에 표면 온도를 노점 온도 이상으로 높이거나 보조적인 제습 에어컨을 설치해야 하는 문제가 있었다. 본 연구에서는 주택 적용을 목표로 복사 판넬 표면에 결로를 유발시킴으로써 냉각 열량을 증가시키고 실내 쾌적감도 개선할 수 있는 1.0 kW 용량의 복사-대류 방식의 하이브리드 냉방기에 대하여 검토하였다. 이 냉방기는 2개의 냉동 사이클 - 강제 대류 제습 사이클과 복사 판넬 냉방 사이클로 구성된다. 시제품 실험 결과 복사 판넬 사이클의 경우 실외 $35^{\circ}C/24^{\circ}C$, 실내 $27^{\circ}C/19.5^{\circ}C$의 표준 조건에서 냉매 순환량은 8.8 kg/h, 응축 온도 $51^{\circ}C$, 증발 온도 $8.8^{\circ}C$, 냉방 능력은 376 W, 성적계수는 1.75로 나타났다. 또한 복사 판넬의 온도는 $13^{\circ}C{\sim}14^{\circ}C$ 사이에서 고르게 분포되었다. 또한, 상대 습도가 감소할수록 냉방 능력은 감소하나 소비 동력은 거의 변화가 없었다. 제습 사이클의 경우, 표준 조건에서 냉매 순환량은 21.1 kg/h, 응축온도 $61^{\circ}C$, 증발 온도 $5.0^{\circ}C$, 냉방능력은 949 W, COP는 2.11로 나타났다. 한편, 복사 판넬과 제습 냉방 사이클을 동시에 가동시키며 표준 조건에서 시험 결과, 복사 판넬의 냉방 능력은 333 W, 제습부의 냉방 능력은 894 W, COP는 1.89로 나타났다. 홴 풍량이 감소하면 복사 판넬, 제습부 모두 냉방 능력이 감소함을 보였는데 특히 제습부에서 감소량이 두드러졌다. 본 실험 데이터를 기반으로 냉방 부하의 변동에 대비하여 가능한 제어 로직을 제시하였다.

Keywords

SHGSCZ_2019_v20n6_288_f0001.png 이미지

Fig. 1. Air process line across an air-conditioner

SHGSCZ_2019_v20n6_288_f0002.png 이미지

Fig. 2. Conceptual drawing of the radiation/convection hybrid cooling system

SHGSCZ_2019_v20n6_288_f0003.png 이미지

Fig. 3. Schematic drawing of the radiation/convection hybrid cooling system

SHGSCZ_2019_v20n6_288_f0004.png 이미지

Fig. 4. Refrigeration cycle of the radiation/convection hybrid cooling system

SHGSCZ_2019_v20n6_288_f0005.png 이미지

Fig. 5. Condenser circuit division between dehumidification H-X cycle and radiation panel cooling cycle

SHGSCZ_2019_v20n6_288_f0006.png 이미지

Fig. 6. Schematic diagram of the test facility

SHGSCZ_2019_v20n6_288_f0007.png 이미지

Fig. 7. Condensation, evaporation and panel temperatures at different relative humidity

SHGSCZ_2019_v20n6_288_f0008.png 이미지

Fig. 8. Cooling capacity, power and COP at different relative humidity

SHGSCZ_2019_v20n6_288_f0009.png 이미지

Fig. 9. Cooling capacities at different flow rates

Table 1. Specification of radiation cooling cycle

SHGSCZ_2019_v20n6_288_t0001.png 이미지

Table 2. Specification of the humidification cycle

SHGSCZ_2019_v20n6_288_t0002.png 이미지

Table 3. Radiation panel cooling data at standard air condition (outdoor 35°C/24°C, indoor 27°C/19.5°C (50% RH))

SHGSCZ_2019_v20n6_288_t0003.png 이미지

Table 4. Radiation panel cooling data at standard air condition (outdoor 35°C/24°C, indoor 27°C/15.8°C (30% RH))

SHGSCZ_2019_v20n6_288_t0004.png 이미지

Table 5. Dehumidification cooling data at standard air condition (outdoor 35°C/24°C, indoor 27°C/19.5°C (50% RH))

SHGSCZ_2019_v20n6_288_t0005.png 이미지

Table 6. Radiation panel/dehumidification cooling data at standard air condition (outdoor 35°C/24°C, indoor 27°C/19.5°C (50% RH), 3.6 CMM)(a) Radiation panel

SHGSCZ_2019_v20n6_288_t0006.png 이미지

Table 7. Possible control logic for different cooling load

SHGSCZ_2019_v20n6_288_t0007.png 이미지

References

  1. F. Sodec, "Economic Viability of Cooled Ceiling Systems," Energy and Buildings, vol. 30, no. 2, pp. 195-201, 1999. DOI: https://doi.org/10.1016/S0378-7788(98)00087-5
  2. J. Niu, J. V. D. Kooi, H. V. D. Rhee, "Energy Saving Possibilities with Cooled Ceiling Systems," Energy and Buildings, vol. 23, no. 2, pp. 147-158, 1995. DOI: https://doi.org/10.1016/0378-7788(95)00937-X
  3. J. W. Jeong, S. A. Mumma, "Practical Cooling Capacity Estimation Model for a Suspended Metal Ceiling Radiant Cooling Panel," Buildings and Environment, vol. 42, no. 9, pp. 3176-3185, 2007. DOI: https://doi.org/10.1016/j.buildenv.2006.08.006
  4. J. Y. Lee, "Evaluation of Thermal Comfort in Ceiling Cooling System," Korean J. Air-Conditioning and Refrigeration, vol. 20, no. 4, pp. 287-293, 2008.
  5. D. S. Song, "A proposal of Hybrid Cooling System Coupled with Radiation Panel Cooling and Natural Ventilation," Korean J. Air-Conditioning and Refrigeration, vol. 15, no. 6, pp. 543-550, 2003. DOI: https://doi.org/10.7782/JKSR.2012.15.6.543
  6. J. H. Lim, M. S. Yeo, I. H. Yang, K. W. Kim, A Study on the Application of the Dehumidification System for Radiant Floor Cooling Using Ondol, Korean J. Air-Conditioning and Refrigeration, vol. 14, no. 7, pp. 607-616, 2002.
  7. S. Y. Lee, S. H. Hwang, K. H., Kim, S. B. Leigh, "An Experimental Study for Evaluating Performance of Radiant Floor Cooling System Integrated with Dehumidification," Korean J. Air-Conditioning and Refrigeration, Vol. 14, No. 2, pp. 142-152, 2002.
  8. H.-K. Kim, "Development of Radiation/Convection Hybrid Air-Conditioner," Korea Construction and Traffic Technology Development Progam, 2008.
  9. KS C 9306 "Air-Conditioner," Korea Standard Association, 2010.
  10. ASHRAE Standard 41.1, "Standard Method for Temperature Measurement," ASHRAE, 1986.
  11. ASHRAE Standard 41.2, "Standard Method for Laboratory Air-Flow Measurement," ASHRAE, 1987.