DOI QR코드

DOI QR Code

Development of Anti-Glare Coating Technique Using Screen Printing

스크린 프린팅 기법을 이용한 눈부심 방지 기술 개발

  • Choi, Jeongju (Research Foundation for Industry-Academy Cooperation, Dona-A University)
  • 최정주 (동아대학교 산학협력단)
  • Received : 2019.03.14
  • Accepted : 2019.06.07
  • Published : 2019.06.30

Abstract

In this paper, a manufacturing method of an anti-glare cover glass on LCD for outdoor use is proposed. The main specification of cover glass is hardness and anti-glare. Hardness is achieved by using the tempered glass, and anti-glare(AG) film is laminated to meet anti-glare specification no the tempered glass. However, the AG film is difficult to maintain the AG performance continuously because the abrasion resistance of the PET film itself is as weak as about 3H. Therefore, a novel production procedure using screen printing method is proposed. The proposed coating is implemented by applying $ZnO-B_2O_3-SiO_2$ powder on glass surface and the glass is made with enhanced hardness through tempering process. In order to apply the ZBS powder uniformly on the glass surface, a screen printing process is used. The main parameters to be considered in screen printing are the oil concentration and mesh opening size. Because the amount of ZBS powder applied to the printing process is controlled by these two parameters, the correlativity is confirmed through the experiments. In order to evaluate the performance of the proposed method, the haze, surface roughness and transmittance are selected as the performance index and are compared with the AG film. As a result of comparison, it is verified that the transmittance of the proposed tempered glass is 83.1%, which is slightly lower than 89.5% of AG film, but the hardness is more than double to 7H.

본 논문에서는 옥외용 디스플레이의 눈부심 방지 강화유리 생산 방법을 제안하였다. 일반적으로 옥외용 디스플레이를 위한 커버글라스의 주요 사양은 내강도와 눈부심 방지이다. 내강도는 커버글라스를 고온로에서 열처리한 강화유리를 사용하여 그 요구 사양을 만족시키고 눈부심 방지를 위해서는 AG(Anti-Glare)필름을 강화 유리에 접착하여 주로 사용한다. 그러나 필름 형태의 눈부심 방지기술은 PET 필름자체의 내마모성이 3H정도로 취약하여 AG 성능이 지속적으로 유지되기 어렵다. 따라서 본 논문에서는 AG 필름이 가지는 내구성의 단점을 보완하고 기존 강화유리 생산 공정을 이용하는 눈부심 방지 기술을 제안하였다. 제안된 눈부심 방지 코팅은 ZBS ($ZnO-B_2O_3-SiO_2$) 분말을 유리 표면에 도포하고 강화공정을 수행하여 내구 강도와 눈부심 방지 성능을 높일 수 있도록 하였다. ZBS 분말을 유리 표면에 도포하기 위해서는 스크린 프린팅 공정을 이용하여 분말이 유리표면에 균일하게 도포되도록 하였다. 스크린 프린팅 시 고려되어야 하는 주요 변수는 분말을 희석하기 위한 오일의 농도와 메쉬 오프닝 사이즈이다. 이 두 변수의 설정에 따라 스크린 프린팅 공정에서 도포되는 ZBS 분말의 양이 조절되므로 이에 대한 상관관계를 실험을 통해 규명하였다. 제안된 제조 방법의 성능을 평가하기 위해 상업용 시장에서 널리 사용되는 haze, 표면 거칠기 및 투과도를 성능 지표로 선정하였고 눈부심 방지를 위해 일반적으로 사용되는 AG필름과 비교하여 그 성능을 검증하였다. 비교 결과 제안된 제조 방법에 의한 강화유리의 투과도는 AG필름의 89.5%보다 다소 감소한 83.1%이지만 막강도는 7H로 두배 이상 향상됨을 확인하였다.

Keywords

SHGSCZ_2019_v20n6_272_f0001.png 이미지

Fig. 2. Manufacturing process of tempered LCD cover glass

SHGSCZ_2019_v20n6_272_f0002.png 이미지

Fig. 3. Fabrication process of AG coating using the proposed screen printing

SHGSCZ_2019_v20n6_272_f0003.png 이미지

Fig. 4. Optically penetrated images according to oil concentration for a mesh opening size of 62μm

SHGSCZ_2019_v20n6_272_f0004.png 이미지

Fig. 5. Haze values for different experimental conditions (oil concentration & mesh opening size)

SHGSCZ_2019_v20n6_272_f0005.png 이미지

Fig. 6. Relative depth vs. horizontal length for cases 2, case 5 and case 8

SHGSCZ_2019_v20n6_272_f0006.png 이미지

Fig. 7. Roughness for different experimental conditions (oil concentration & mesh opening size)

SHGSCZ_2019_v20n6_272_f0007.png 이미지

Fig. 8. Comparison of legibility

SHGSCZ_2019_v20n6_272_f0008.png 이미지

Fig. 1. Concept diagram of anti-glare coating using the micro-beads

Table 1. Softening temperature of ZBS according to mixing composition ratio

SHGSCZ_2019_v20n6_272_t0001.png 이미지

Table 2. Material property of selected ZBS

SHGSCZ_2019_v20n6_272_t0002.png 이미지

Table 3. Experimental conditions and results

SHGSCZ_2019_v20n6_272_t0003.png 이미지

References

  1. B. Liu, Y. Teng, R. Lee, W. Liaw, C. Hsieh, "Strength of the interactions between light-scattering particles and resins affects the haze of anti-glare films", Colloids and Surface A: Physicochemical and Engineering Aspects, Vol.389, No.1-3, pp.138-143, 2011. DOI: https://doi.org/10.1016/j.colsurfa.2011.08.039
  2. B. Liu, W. Yeh, W. Wang, "Preparation of low refractive index fluorinated materials for anti reflection coatings", Journal of Applied Polymer Science, Vol.118, No.3, pp.1615-1619, 2010. DOI: https://doi.org/10.1002/app.32539
  3. B. Liu, W. Yeh, "Reflective properties of nanoparticle-arrayed surfaces", Thin Solid Films, Vol.518, pp.6015-6021, 2010. DOI: https://doi.org/10.1016/j.tsf.2010.06.044
  4. C. Schelle, M. Mennig, H. Krug, G. Jonschker, H. Schmidt, "One step antiglare sol-gel coating for screens by sol-gel techniques", Journal of Non Crystal Solids, Vol.218, pp.163-168, 1997. DOI: https://doi.org/10.1016/S0022-3093(97)00290-1
  5. D. Chen, "Anti-reflection (AR) coatings made by sol-gel processes: A review", Solar Energy Material and Solar Cells, Vol.68, No.3-4, pp.313-336, 2001. DOI: https://doi.org/10.1016/S0927-0248(00)00365-2
  6. K. Abe, Y. Sanada, T. Morimoto, "Anti-Reflective Coatings for CRTs by Sol-Gel Process", Journal of Sol-Gel Science and Technology, Vol.22, No.1-3, pp.151-166, 2001. DOI: https://doi.org/10.1023/A:1020737902758
  7. B. Liu, Y. Teng, "A novel method to control inner and outer haze of an anti-glare film by surface modification of light-scattering particles", Journal of Colloid Interface Science, Vol.350, pp.421-426, 2010. DOI: https://doi.org/10.1016/j.jcis.2010.07.014
  8. S. Song, Y. Sun, Y. Lin, B. You, "A facile fabrication of light diffusing film with LDP/polyacrylates composites coating for anti-glare LED application", Applied Surface Science Vol.273, pp.652-660, 2013. DOI: https://doi.org/10.1016/j.apsusc.2013.02.103
  9. T. Maekawa, Antiglare film and use thereof, US Patent 6217176, (April 17,2001).
  10. H. Suzuki, Anti-glare film and process for producing same thereof, US Patent 6693140 (February 24, 2004).
  11. M.A. Aegerter, N. Al-Dahoudi, "Wet-chemical processing of transparent and antiglare conducting ITO coating on plastic substrates", Journal of Sol-Gel Science Technology, Vol.27, pp.81-89, 2003. DOI: https://doi.org/10.1023/A:102263611
  12. P. Lin, Y. Lin, S. Hwang, S. Jeng, C. Liao, "Effects of anti-glare surface treatment, ambient illumination and bending curvature on legibility and visual fatigue of electronic papers", Displays, Vol.29, pp.25-32, 2008. DOI: https://doi.org/10.1016/j.displa.2007.06.009
  13. B. Schenkman, T. Fukuda, B. Persso, "Glare from monitors measured with subjective scales and eye movements", Displays, Vol. 20, pp. 11-21, 1991. DOI: https://doi.org/10.1016/S0141-9382(98)00055-9
  14. S. Kubota, "Effects of the reflection properties of liquid-crystal displays on subjective rating of disturbing reflected glare", Journal of Light and Visual Environment, Vol.21, No.1, pp.33-42, 1997. DOI: https://doi.org/10.2150/jlve.21.1_33
  15. H.P. Kuo, M.Y. Chuang, C.C. Lin, "Design correlations for the optical performance of the particle-diffusing bottom diffusers in the LCD backlight unit", Powder Technology, Vol.192, pp. 116-121, 2009. DOI: https://doi.org/10.1016/j.powtec.2008.12.003
  16. K.P. Surendran, P. Mohanan, M.T. Sebastian, "The effect of glass additives on the microwave dielectric properties of $Ba(Mg_{1/3}Ta_{2/3})O_3$ ceramics", Journal of Solid State Chemistry, Vol.177, pp.4031-4046, 2004. DOI: https://doi.org/10.1016/j.jssc.2004.07.018
  17. M.T. Sebastian, Dielectric Materials for Wireless Communication, Elsevier Science, 2010.
  18. J.H. Yi, Y.N. Ko, H.Y.Koo, D.S. Jung, Y.C. Kang, "Characteristics of ZnO-$B_2O_3$-$SiO_2$ glass powders prepared by spray pyrolysis as densification promoter for $BaTiO_3$ ceramics", Journal of Ceramic Processing Research, Vol.12, No.2, pp.122-125, 2011 DOI: https://doi.org/10.1016/j.jallcom.2011.05.053