DOI QR코드

DOI QR Code

The Study of Wave, Wave-Induced Current in CHUNG-UI Beach

충의휴양소 전면 해수욕장의 파랑 및 해빈류에 관한 연구

  • Chang, Pyong-Sang (Department of Civil Engineering, University of Seoul) ;
  • Bae, Sung-Gyu (Department of Environment & Construction Management, Korean Air Co. Ltd)
  • 장병상 (서울시립대학교 대학원 토목공학과) ;
  • 배성규 (대한항공(주) 환경건설관리부)
  • Received : 2019.03.06
  • Accepted : 2019.06.07
  • Published : 2019.06.30

Abstract

In this study, the past erosion history and current status in the CHUNG-UI beach of Eulwang-dong, Jung-gu, Incheon-Si, South Korea were investigated and analyzed the wave with wave-induced current to investigate the causes of coastal erosion. As a result, the significant wave height ($H_{1/3}$) was in the range of 0.07~1.57 m and the mean value was 0.21 m. The maximum wave height ($H_{max}$) was in the range of 0.02-4.76m and the mean value was 0.27m. The vertical wave height and cycles were estimated through numerical model experiments of wave transformation. The 50-year frequency design wave height ranged from 0.82m to 3.75m. As a result of the experiment of wave-induced current, wave-induced current in the CHUNG-UI beach was decreased after the installation of the Detached breakwater and the Jetty. On the other hand, when the crest elevation was increased up to 5 m, there was no significant change, but when the crest elevation was increased to 8m, strong wave-induced current occurred around the submerged breakwaters due to lowered depth of water. In addition, the main erosion of the CHUNG-UI beach is due to the intensive invasion of the wave characteristics coming from the outer sea into the white sandy beach. The deformation of the wave centered on the front of the sandy beach caused additional longshore currents flowing parallel to the sandy beach and rip currents in the transverse direction, thus confirming that the longshore sediment was moved out of the front and out of the sea. The results of this study can be used as preliminary data for the recovery of the sand and the selection of efficient erosion prevention facilities.

본 연구에서는 인천광역시 중구 을왕동 충의휴양소 전면 해역에서의 과거 침식이력 및 현황을 세밀히 조사하고 해안선 침식원인을 찾기 위해 파랑 및 해빈류 등을 조사하여 분석 하였다. 관측결과 유의파고($H_{1/3}$)는 0.07~1.57 m의 범위로 나타났고, 평균값은 0.21 m로 나타났다. 또한 최대파고($H_{max}$)는 0.02-4.76m 범위로 나타났고, 평균값은 0.27 m로 나타났다. 파랑변형 수치모형실험을 통해 법선파고 및 주기를 산정하였고, 50년 빈도 설계파고는 0.82 m~3.75 m의 범위를 나타내었다. 해빈류 실험 결과 이안제 및 도류제 설치 이후 충의 휴양소 해안 부근의 해빈류가 감소하는 경향을 나타냈다. 반면, 마루높이를 5 m까지 높였을 경우에는 큰 변화가 없었지만 8m로 높이면 낮아진 수심의 영향으로 강한 해빈류가 수중방파제 주변에 발생하였다. 또한, 충의휴양소의 주된 침식원인은 외해로부터 입사하는 파랑특성이 백사장 전면에 집중적으로 내습하기 때문이다. 백사장 전면으로 집중되는 파의 변형으로 백사장과 평행하게 흐르는 연안류와 횡단방향으로의 이안류를 추가적으로 유발시킴으로써 연안표사가 전면외해로 이동/유출하기 때문으로 확인할 수 있었다. 본 연구의 결과는 백사장 원상복구 및 효율적인 침식방지시설 선정의 기초자료로 활용될 수 있을 것으로 사료된다.

Keywords

SHGSCZ_2019_v20n6_142_f0001.png 이미지

Fig. 1. Position Map of Wave Gauge and Wave-Induced Current

SHGSCZ_2019_v20n6_142_f0002.png 이미지

Fig. 2. Time variation of observation wave

SHGSCZ_2019_v20n6_142_f0003.png 이미지

Fig. 3. Incidence rate of Significant Wave Heights (H1/3) per Wave Directions

SHGSCZ_2019_v20n6_142_f0004.png 이미지

Fig. 4. Incidence rate of Maximum Heights (H1/10) per Wave Directions

SHGSCZ_2019_v20n6_142_f0005.png 이미지

Fig. 5. Incidence rate of Average Wave Heights (Hmean) per Wave Directions

SHGSCZ_2019_v20n6_142_f0006.png 이미지

Fig. 6. Incidence rate of Extreme Heights (Hmax) per Wave Directions

SHGSCZ_2019_v20n6_142_f0007.png 이미지

Fig. 7. Movement path of buoys over time

SHGSCZ_2019_v20n6_142_f0008.png 이미지

Fig. 8. Grid position map of main Deepwater Design Wave (50-year reproduction frequency)

SHGSCZ_2019_v20n6_142_f0009.png 이미지

Fig. 9. Location map of Normal Wave Height

SHGSCZ_2019_v20n6_142_f0010.png 이미지

Fig. 10. Experiment results of Wave Height Distribution of WNW Wave direction (50-year frequency)

SHGSCZ_2019_v20n6_142_f0011.png 이미지

Fig. 11. Experiment results of Wave Height Distribution of W Wave direction (50-year frequency)

SHGSCZ_2019_v20n6_142_f0012.png 이미지

Fig. 12. Verification experiment result of Wave-induced Current

SHGSCZ_2019_v20n6_142_f0013.png 이미지

Fig. 13. CASE 1 Experiment Result of Wave-induced Current

SHGSCZ_2019_v20n6_142_f0014.png 이미지

Fig. 14. CASE 2 Experiment Result of Wave-induced Current

SHGSCZ_2019_v20n6_142_f0015.png 이미지

Fig. 15. CASE 3 Experiment Result of Wave-induced Current

Table 1. Investigation contents

SHGSCZ_2019_v20n6_142_t0001.png 이미지

Table 2. Average and Maximum·Minimum values of Wave property coefficients

SHGSCZ_2019_v20n6_142_t0002.png 이미지

Table 3. Observation results of Wave-induced current

SHGSCZ_2019_v20n6_142_t0003.png 이미지

Table 4. Wave Transformation Experiment Overview

SHGSCZ_2019_v20n6_142_t0004.png 이미지

Table 5. The results of the design wave analysis for the 50-year frequency interval

SHGSCZ_2019_v20n6_142_t0005.png 이미지

Table 6. Summary of Experimental for Wave-induced current

SHGSCZ_2019_v20n6_142_t0006.png 이미지

References

  1. S. H. Shin, K. Y. Hong "Development of Hybrid Three Dimensional Beach Deformation Model and Its Application", Journal of the Korea Society for Marine Environmental Engineering, Vol.7, No.4, pp.199-206, 2004. UCI: G704-001346.2004.7.4.002
  2. J. S. LEE, D. H. Tac, J. G. Woo "Characteristics of Seasonal Sediment Transport in Haeundae Beach", Journal of Korean Society of Coastal and Ocean Engineers, Vol.19, No.6, pp.574-585, 2007. UCI: G704-000422.2007.19.6.008
  3. H. S. Jang "Numerical Model Experiments of Wave Transformation for the Marine Structure Design", Journal of Information and Communication Convergence Engineering, Vol.16, No.3, pp.440-447, 2012. UCI: G704-SER000003195.2012.16.3.006
  4. M. Umeyama, "Reynolds stresses and velocity distributions in a wave-current coexisting environment." Journal of Waterway, Port, Coastal, Ocean Engineering, Vol.131, Issue 5, pp.203-212, Sep. 2005. DOI: https://doi.org/10.1061/(ASCE)0733-950X(2005)131:5(203)
  5. Ministry of Oceans and Fisheries. Long Term Wave Climate Statistics Source Books. p.412, Ministry of Oceans and Fisheries, 1997.
  6. Ministry of Oceans and Fisheries. Wave Observation Data and Survey (1998-2003). p.360, Ministry of Oceans and Fisheries, 2003.
  7. K. C. Chon, Research service for calculation of deep sea wave in whole sea area (2016), Research Report, Korea Ministry of Oceans and Fisheries, Korea, pp.115.
  8. P. A. Madson, O. R. Sorensen, "A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry", Coastal Engineering, Vol.18, No.3-4, pp.183-204, Dec. 1992. DOI: https://doi.org/10.1016/0378-3839(92)90019-Q
  9. D. Y. Lee, K. C. Chon, Estimation report of deep sea design wave in whole sea area II, Research Report, Korea Ocean Research & Development Institute, Korea, pp.337.