DOI QR코드

DOI QR Code

리튬이온전지를 이용한 전기저장장치의 SAT용 성능평가 알고리즘에 관한 연구

A Study on the Site Acceptance Test(SAT) Evaluation Algorithm of Energy Storage System using Li-ion Battery

  • 투고 : 2019.04.30
  • 심사 : 2019.06.07
  • 발행 : 2019.06.30

초록

ESS는 각 제품의 품질 및 안전성이 보장되더라도 현장에서 조립하는 사람 혹은 환경에 따라 완성 품질이 달라지므로, 설치공정의 표준화 및 현장에 설치된 ESS에 대한 안전성 시험평가기술의 개발이 요구되고 있다. 또한, 선진국에서는 ESS의 성능을 보다 정확하고 신뢰성 있게 검증하기 위하여, H/W에 의한 성능 시험뿐만 아니라 S/W에 의한 성능검증도 요구하고 있는 실정이다. 따라서 본 논문에서는 현장에 설치되어 있는 ESS의 성능을 평가하기 위하여 SAT(Site Acceptance Test)용 평가알고리즘을 제안하였다. 또한, 전력계통 상용해석 프로그램인 PSCAD/EMTDC를 이용하여 ESS의 SAT용 시험장치를 모델링 하고, 이를 바탕으로 30[kW]급 시험장치를 구현하였다. 상기에서 제안한 평가알고리즘을 이용하여 다양한 시뮬레이션과 특성시험을 비교한 결과, 용량 및 Round-trip 효율, Duty-cycle 추종특성, LVRT 특성, Anti-islanding특성에 대한 ESS의 성능을 정확하게 평가할 수 있었고, 모델링에 의한 특성과 시험장치에 의한 특성이 거의 동일하게 나타나, 본 논문에서 제안한 평가알고리즘의 유용성을 확인하였다.

Recently, standardization of installation progress and technology of site acceptance test(SAT) for energy storage system(ESS) are being required due to performance of ESS depending on working condition and environment even though the quality and safety of each component of ESS is guaranteed. And also, it has been required to perform not only performance testing by H/W equipments but also performance verification by S/W tool, in order to more accurately and reliably validate the performance of the ESS in advanced countries. Therefore, this paper proposes evaluation algorithm for SAT to evaluate performance of ESS and presents modeling of SAT test equipment for ESS by using PSCAD/EMTDC. Furthermore, 30[kW] scaled portable test equipments is implemented based on the proposed algorithm and modeling. From the various simulation and test results, it is confirmed that performance of ESS related to characteristics of capacity and Round-trip efficiency, Duty-cycle efficiency, low voltage ride through(LVRT) and Anti-islanding can be accurately evaluated and that the simulation results of PSCAD/EMTDC are identical to test results of 30[kW] test equipment.

키워드

SHGSCZ_2019_v20n6_26_f0001.png 이미지

Fig. 1. Pattern of capacity and Round-trip

SHGSCZ_2019_v20n6_26_f0002.png 이미지

Fig. 2. Capacity and Round-trip test algorithm

SHGSCZ_2019_v20n6_26_f0003.png 이미지

Fig. 3. Pattern of PNNL-22010

SHGSCZ_2019_v20n6_26_f0004.png 이미지

Fig. 4. Duty-cycle algorithm

SHGSCZ_2019_v20n6_26_f0005.png 이미지

Fig. 5. LVRT test algorithm

SHGSCZ_2019_v20n6_26_f0006.png 이미지

Fig. 6. Anti-islanding test algorithm

SHGSCZ_2019_v20n6_26_f0007.png 이미지

Fig. 7. Entire modeling of potable test equipment for ESS

SHGSCZ_2019_v20n6_26_f0008.png 이미지

Fig. 8. Configuration of portable test equipment for ESS

SHGSCZ_2019_v20n6_26_f0009.png 이미지

Fig. 9. Characteristic of Capacity and Round-trip

SHGSCZ_2019_v20n6_26_f0010.png 이미지

Fig. 10. Characteristic of Duty-cycle

SHGSCZ_2019_v20n6_26_f0011.png 이미지

Fig. 11. Characteristic of LVRT

SHGSCZ_2019_v20n6_26_f0012.png 이미지

Fig. 12. Characteristic of Anti-islanding

SHGSCZ_2019_v20n6_26_f0013.png 이미지

Fig. 13. Characteristic of Capacity and Round-trip

SHGSCZ_2019_v20n6_26_f0014.png 이미지

Fig. 14. Characteristic of Duty-cycle

SHGSCZ_2019_v20n6_26_f0015.png 이미지

Fig. 15. Characteristic of LVRT

SHGSCZ_2019_v20n6_26_f0016.png 이미지

Fig. 16. Characteristic of Anti-islanding

Table 1. Classification for SAT

SHGSCZ_2019_v20n6_26_t0001.png 이미지

Table 2. Instantaneous voltage drop condition of LVRT

SHGSCZ_2019_v20n6_26_t0002.png 이미지

Table 3. Output condition of ESS

SHGSCZ_2019_v20n6_26_t0003.png 이미지

Table 4. Test condition of Anti-islanding A

SHGSCZ_2019_v20n6_26_t0004.png 이미지

Table 5. Test condition of Anti-islanding B&C

SHGSCZ_2019_v20n6_26_t0005.png 이미지

Table 6. Simulation conditions

SHGSCZ_2019_v20n6_26_t0006.png 이미지

참고문헌

  1. Eung-Sang Kim, "Microgrid and ICT Technology", The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers, vol. 29, no. 4, pp. 12-25, 2015. 7.
  2. IEEE 1547.1, "IEEE Standard conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power System", June, 2005.
  3. IEEE 1547. 6, "IEEE Standard conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power System", June, 2009.
  4. IEC 61000-4-11, "Voltage dips, short interruptions and voltage variation immunity test", 2014.
  5. IEC 62933-2-1, "Electrical energy storage(EES) systems - Part 2-1: Unit parameters and testing methods - General specification", 2017.
  6. IEC 62933-5-1, "Electrical energy storage(EES) systems - Part 5-1: Safety considerations for grid-integrated EES systems - General", 2017.
  7. SGSF-025-5-x "Electrical energy storage system- Part x Site acceptance test method", 2019.
  8. SPS-C-KBIA-10104-03-7312 "Secondary lithium- ion battery system for battery energy storage systems-performance and safety requirements, 2018
  9. PNNL-22010 ('2012, Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems)
  10. IEC 61400-21 "Wind turbines-Part 21 Measurement and assessment of power quality characteristics of grid connected wind turbines", 2008.
  11. IEC 62116 "Utility-interconnected photovoltaic inverters - Test procedure of islanding prevention measures", 2014
  12. Min-Kwan Kang, Sung-Sik Choi, Jae-Beom Park, Yang-Hyeon Nam, Eung-Sang Kim, Dae-Seok Rho, "A Study on the Modeling Method of Performance Evaluation System for MW Scaled Energy Storage System Using the PSCAD/EMTDC", The transactions of The Korean Institute of Electrical Engineers, vol. 66, no. 6, pp. 885-891, 2017. 6. DOI: http://doi.org/10.5370/KIEE.2017.66.6.885
  13. Jea-Bum Park, Mi-Sung Kim, Dae-Seok Rho, "Characteristic Analysis and Implementation of 30kW Portable Test Equipment for Performance Evaluation in Energy Storage System", The transactions of The Korean Institute of Electrical Engineers, vol. 67, no. 6, pp. 715-723, 2018. 6. DOI: http://doi.org/10.5370/KIEE.2018.67.6.715