DOI QR코드

DOI QR Code

Research on Development of Construction Spatial Information Technology, using Rover's Camera System

로버 카메라 시스템을 이용한 건설공간정보화 기술의 개발 방안 연구

  • Hong, Sungchul (Department of Future Technology and Convergence Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Chung, Taeil (Department of Future Technology and Convergence Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Jaemin (Innovation and Strategy Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Shin, Hyu-Sung (Department of Future Technology and Convergence Research, Korea Institute of Civil Engineering and Building Technology)
  • 홍성철 (한국건설기술연구원 미래융합연구본부) ;
  • 정태일 (한국건설기술연구원 미래융합연구본부) ;
  • 박재민 (한국건설기술연구원 혁신전략실) ;
  • 신휴성 (한국건설기술연구원 미래융합연구본부)
  • Received : 2019.04.05
  • Accepted : 2019.07.05
  • Published : 2019.07.31

Abstract

The scientific, economical and industrial values of the Moon have been increased, as massive ice-water and rare resource were founded from the lunar exploration missions. Korea and other major space agencies in the world are competitively developing the ISRU (In Situ Resource Utilization) technology to secure future lunar resource as well as to construct the lunar base. To prepare for the lunar construction, it is essential to develop the rover based construction spatial information technology to provide a decision-making aided information during the lunar construction process. Thus, this research presented the construction spatial information technology based upon rover's camera system. Specifically, the conceptual design of rover based camera system was designed for acquisition of a rover's navigation image, and lunar terrain and construction images around the rover. The reference architecture of the rover operation system was designed for computation of the lunar construction spatial information. Also, rover's localization and terrain reconstruction methods were introduced considering the characteristics of lunar surface environments. It is necessary to test and validate the conceptual design of the construction spatial information technology. Thus, in the future study, the developed rover and rover operation system will be applied to the lunar terrestrial analogue site for further improvements.

달에 얼음 형태의 물과 희귀 자원의 대량 존재하는 것이 밝혀지면서, 달의 경제적, 산업적 가치는 증대되고 있다. 이에 우리나라를 포함한 전 세계 주요 우주국들은 달 자원 확보와 유인 기지 건설을 위한 현지 자원 활용 기술을 개발하고 있다. 향후 달 현지 건설을 준비하기 위해서는 로버에서 취득한 지형 및 건설 영상을 가공하여, 건설 전 주기의 의사결정 지원정보를 제공하는 무인 건설공간정보화 기술을 개발해야한다. 본 연구에서는 달 로버 카메라 시스템을 기반으로 한 건설공간정보화 기술의 개발 방안을 소개하였다. 세부적으로 로버의 주행 영상, 지형 및 건설 영상 취득을 위한 로버 기반 카메라 시스템의 개념 설계와 달 건설공간정보 구축을 위한 분산 환경 기반의 개념적 아키텍쳐인 달 로버 운영 시스템을 제안하였다. 또한 달 표면에 특화된 로버의 위치 결정 및 3차원 지형복원 기법 개발 방안을 제시하였다. 본 연구에 도출한 달 무인 건설공간정보화 기술은 개념적 설계로 실험을 통한 검증이 필요하다. 따라서 개발된 로버와 로버운영 시스템은 향후, 달 모의 지형에 적용하여 개선할 예정이다.

Keywords

SHGSCZ_2019_v20n7_630_f0001.png 이미지

Fig. 1. Yutu-1 [10]

SHGSCZ_2019_v20n7_630_f0002.png 이미지

Fig. 2. Spirit [11]

SHGSCZ_2019_v20n7_630_f0003.png 이미지

Fig. 3. Curiosity [12]

SHGSCZ_2019_v20n7_630_f0004.png 이미지

Fig. 4. Conceptual Design of a Camera System based on Rover

SHGSCZ_2019_v20n7_630_f0005.png 이미지

Fig. 5. Reference Architecture of a Rover Operation System

SHGSCZ_2019_v20n7_630_f0006.png 이미지

Fig. 6. Example of Rover’s Planned Route and Current Position shown from GIS-based Rover Control System

SHGSCZ_2019_v20n7_630_f0007.png 이미지

Fig. 7. Rover’s Localization Method. (a) Chang’e 3 and Yutu-1 [14], (b) Yutu-1 on LRO’s NAC Image [15]

Table 1. Development Requirements of Rover based Construction-Spatial Information Technology

SHGSCZ_2019_v20n7_630_t0001.png 이미지

Table 2. Rover-based Camera System for Construction Spatial Technology

SHGSCZ_2019_v20n7_630_t0002.png 이미지

References

  1. G. Ju "Development Status of Domestic & Overseas Space Exploration & Associated Technology," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 44, no. 8, pp. 741-757, 2016. DOI: https://doi.org/10.5139/JKSAS.2016.44.8.741
  2. K. J. Kim "A Research Trend on Lunar Resource and Lunar Base", The Journal of The Petrological Society of Korea, vol. 26, no. 4, pp. 373-384, 2017. DOI: https://doi.org/10.7854/JPSK.2017.26.4.373
  3. ISECG, "The Global Exploration Roadmap", Available from https://www.nasa.gov/sites/default/files/files/GER-2013_Small.pdf (accessed February, 6, 2018)
  4. NASA, "New Space Policy Directive Calls for Human Expansion Across Solar System", Available from : https://www.nasa.gov/press-release/new-space-policy-directive-calls-for-human-expansion-across-solar-system (accessed March, 19, 2018)
  5. ESA, "Moon Village: A Vision for Global Cooperation and Space 4.0", Available from : https://www.esa.int/About_Us/Ministerial_Council_2016/Moon_Village (accessed March, 19, 2018)
  6. S. Hong, K. Kim, M. Seo, H. Shin "Geographic Distribution Analysis of Lunar In-Situ Resource and Topography to Construct Lunar Base," Journal of The Korean Academia-Industrial cooperation Society, vol. 19, no. 6, pp. 669-676, 2018. DOI: https://doi.org/10.5762/KAIS.2018.19.6.669
  7. W. Lee, G. Ju, G. Choi, E. Sim "Development Trends of Space Robots," Current Industrial and Technological Trends in Aerospace, vol. 9, no. 2, pp. 158-175, 2011.
  8. W. Eom, Y. Kim, J. Lee, G. Choi, E. Sim "Development Trends of Unmanned Planetary Exploration Rover by NASA" Current Industrial and Technological Trends in Aerospace, vol. 10, no. 2, pp. 102-111, 2012.
  9. S. Choi, D. Lee, J. Bae, D. Ryu, G. Ju, E. Sim "Introduction to Chang'e-3 and Analysis of Estimated Mission Trajectory," The Korean Society for Aeronautical and Space Sciences, vol. 43, no. 11, pp. 984-997, 2015. DOI: http://dx.doi.org/10.5139/JKSAS.2015.43.11.984
  10. SapceLight 101, "Chang'e 3-Mission Overview." Available from http://spaceflight101.com/change/change-3 (accessed Sep, 12, 2018)
  11. NASA-JPL "Mars Exploration Rover," Available from https://www.jpl.nasa.gov/missions/mars-exploration-rover-spirit-mer-spirit (accessed March, 6, 2019)
  12. NASA-JPL "Curiosity Rover," Available from : https://www.nasa.gov/mission_pages/msl/index.html (accessed March, 6, 2019)
  13. R. Elphic, M. Colaprete, M. Shirley, A. McGovern, R. Beyer "Resource Prospector Landing Site And Traverse Plan Development," Annual Meeting of the Lunar Exploration Analysis Group, November, vol. 1960, 2016.
  14. Planetary Society "Chang'e 3 data: Lander Terrain Camera (TCAM)," Available from http://planetary.s3.amazonaws.com/data/change3/tcam.html (accessed April 24, 2019)
  15. NASA, Lunar Reconnaissance Orbiter Camera, Available from : http://lroc.sese.asu.edu/posts/929 (accessed April 24, 2019)