Space-Frequency Block Coded Single Side Band SC-FDMA Transmission System

주파수 공간 블록 부호화된 단일 측대 파형 SC FDMA 전송 시스템

  • Won, Hui-Chul (Division of Computer and Information Engineering, Daegu University)
  • 원희철 (대구대학교 컴퓨터정보공학부)
  • Received : 2019.04.08
  • Accepted : 2019.07.05
  • Published : 2019.07.31


Recently, a variety of methods for the performance improvement of ultra-high speed wideband wireless transmission systems have been suggested. This paper proposes a space-frequency (SF) block coded single side band (SSB) single carrier (SC)-frequency division multiple access (FDMA) transmission system. In the proposed SSB SC-FDMA system, SF block code is implemented with the complex conjugates, which are formed from discrete Fourier transform (DFT) spreading of pulse amplitude modulation (PAM) signals. As a result, transmit diversity gain can be obtained in the proposed SF block coded SSB SC-FDMA system without any significant increase of the system computational complexity. The simulation result shows that the signal-to-noise power ratio (SNR) performance of the proposed SF block coded SSB SC-FDMA system is approximately 4 dB better than the SNR performance of the conventional SSB SC-FDMA system with single transmit antenna at a symbol error rate (SER) of $10^{-2}$.

최근에 초고속 광대역 무선통신 전송 시스템의 수신 성능 개선을 위한 다양한 기술들이 제안되고 있다. 본 논문에서는 주파수 공간 블록 부호화된 단일 측대 파형 SC (Single Carrier) FDMA (Frequency Division Multiple Access) 전송 시스템을 제안한다. 본 논문에서 제안된 주파수 공간 블록 부호화된 단일 측대 파형 SC FDMA 전송 시스템에서는 PAM (Pulse Amplitude Modulation) 신호의 DFT (Discrete Fourier Transform) 확산에 따라 생성되는 켤레 복소수 대칭을 활용하여 주파수 공간 블록 부호를 구현한다. 이를 통해 시스템 계산 복잡도를 크게 증가시키지 않으면서 단일 측대 파형 SC FDMA 전송 시스템의 성능 개선을 위한 송신 다이버시티 이득을 획득할 수 있다. 본 논문에서 제안된 주파수 공간 블록 부호화 단일 측대 파형 SC FDMA 시스템의 신호 대 잡음 비 성능이 단일 안테나 기반의 단일 측대 파형 SC FDMA 시스템보다 $10^{-2}$ 심볼 오류율 수준에서 약 4 dB 이상 개선되는 것을 실험을 통해 확인할 수 있다.

SHGSCZ_2019_v20n7_423_f0001.png 이미지

Fig. 1. Space-Frequency block code

SHGSCZ_2019_v20n7_423_f0002.png 이미지

Fig. 2. The characteristic of symbols spreaded after DFT

SHGSCZ_2019_v20n7_423_f0003.png 이미지

Fig. 3. DFT spreading SSB OFDM system

SHGSCZ_2019_v20n7_423_f0004.png 이미지

Fig. 4. SSB SC-FDMA system with no diversity

SHGSCZ_2019_v20n7_423_f0005.png 이미지

Fig. 5. Proposed SF block coded SSB SC-FDMA system

SHGSCZ_2019_v20n7_423_f0006.png 이미지

Fig. 6. SF block coding with LSB signals (e.g. M=64)

SHGSCZ_2019_v20n7_423_f0007.png 이미지

Fig. 7. SF block coding with USB signals (e.g. M=64)

SHGSCZ_2019_v20n7_423_f0008.png 이미지

Fig. 8. Bit error rate performance

SHGSCZ_2019_v20n7_423_f0009.png 이미지

Fig. 9. Symbol error rate performance


Supported by : 대구대학교


  1. R. V. Nee and R. Prasad, "OFDM for Wireless Multimedia Communications", pp.33-51, Artech House Publishers, 2000.
  2. R. V. Nee, G. Awater, M. Morikura, H. Takanashi, M. Webster and K. W. Halford, "New High-rate Wireless LAN Standards", IEEE Communications Magazine, Vol.37, Issue 12, pp.82-88, Dec. 1999. DOI:
  3. Y. Kim, B. Jeong, J. Chung, C. Hwang, J. Ryu, K. Kim and Y. Kim, "Beyond 3G: Vision, Requirement, and Enabling Technologies", IEEE Communications Magazine, Vol.41, Issue 3, pp.120-124, March 2003. DOI:
  4. T. Kwon, H. Lee, S. Choi, J. Kim, D. Cho, S. Cho, S. Yun, W. Park and K. Kim, "Design and Implementation of a Simulator Based on a Cross-layer Protocol Between MAC and PHY Layers in a WiBro Compatible IEEE 802.16e OFDMA System", IEEE Communications Magazine, Vol.43, Issue 12, pp.136-146, Dec. 2005. DOI:
  5. D. Falconer, S. Ariyavisitakul, A. Benyamin-Seeyar and B. Edison, "Frequency Domain Equalization for Single-carrier Broadband Wireless Systems", IEEE Communications Magazine, Vol.40, Issue 4, pp.58-66, April 2002. DOI:
  6. R. Pabst, B. Walke, D. Schultz, P. Herhold, H. Yanikomeroglu, S. Mukherjee, H. Viswanathan, M. Lott, W. Zirwas, M. Dohler, H. Aghvami, D. Falconer and G. Fettweis, "Relay-based Deployment Concepts for Wireless and Mobile Broadband Radio", IEEE Communications Magazine, Vol.42, Issue 9, pp.80-89, Sept. 2004. DOI:
  7. T. Yune. J. Lim, Y. Cheong and G. Im, "Iterative Multiuser Detection with Spectral Efficient Protocol for Relay-assisted SC-FDE", IEEE Communications Letters, Vol.12, Issue 3, pp.182-184, March 2008. DOI:
  8. H. Won, "Space-Frequency Block Coded Relay Transmission System for a Shadow Area", Journal of the Korea Academia-Industrial Cooperation Society, Vol.15, No.9, pp.5776-5782, Sept. 2014. DOI:
  9. M. Umehira, S. Nihei, H. Fusayasu, T. Miyajima, S. Takeda, J. Mashino and T. Sugiyama, "Performance Evaluation of SSB Transmission of DFTs-OFDM Using Multi-level BPSK through Nonlinear HPA", Proceedings of 81st IEEE Vehicular Technology conference, IEEE, Glasgow, UK, July 2015. DOI:
  10. B. Kim and H. Ryu, "Design and Performance Evaluation of Improved DFT-s-SSB OFDM", The Journal of Korean Institute of Communications and Information Sciences, Vol.42, No.11, pp.2086-2092, Nov. 2017. DOI:
  11. J. Lee and H. Ryu, "Performance Evaluation of DFT Spreading SSB WR-OFDM System Using Multi-level PAM Modulation", The Journal of Korean Institute of Communications and Information Sciences, Vol.43, No.12, pp.2032-2040, Dec. 2018. DOI:
  12. S. Alamouti, "A Simple Transmit Diversity Technique for Wireless Communications", IEEE J. Select. Areas Communications, Vol.16, No.8, pp.1451-1458, Oct. 1998. DOI:
  13. V. Tarokh, H. Jafarkhani and A. Calderband, "Space-Time Block Codes from Orthogonal Designs", IEEE Trans. on Information Theory, Vol.45, No.5, pp.1456-1467, July 1999. DOI:
  14. N. Al-Dhahir, "Single-Carrier Frequency-Domain Equalization for Space-Time Block Coded Transmissions over Frequency-Selective Fading Channels", IEEE Communications Letters, Vol.5, No.7, pp.304-306, July 2001. DOI:
  15. J. Jang, H. Won and G. Im, "Cyclic Prefixed Single Carrier Transmission with SFBC over Mobile Wireless Channels", IEEE Signal Processing Letters, Vol.13, No.5, pp.261-264, May 2006. DOI:
  16. F. Ueng, Y. Shen, J. Chang, Y. Chang and M. Hsu, "MIMO Receivers for SFBC SC-FDMA Communication Systems", 2013 IEEE Symposium on Computational Intelligence for Communication Systems and Networks(CIComms), pp.66-71, April 2013. DOI:
  17. A. Oppenheim and R. Schafer, "Discrete-time Signal Processing", pp.55-64, Prentice-Hall Publishers, 1989.