DOI QR코드

DOI QR Code

UAV Path Planning for ISR Mission and Survivability

무인항공기의 생존성을 고려한 감시정찰 임무 경로 계획

  • Bae, Min-Ji (The 1st Research and Development Institute, Agency for Defense Development)
  • 배민지 (국방과학연구소 제1기술본부)
  • Received : 2019.04.08
  • Accepted : 2019.07.05
  • Published : 2019.07.31

Abstract

In an complicated battlefield environment, information from enemy's camp is an important factor in carrying out military operations. For obtaining this information, the number of UAVs that can be deployed to the mission without our forces' loss and at low cost is increasing. Because the mission environment has anti-aircraft weapons, mission space is needed for UAV to guarantee survivability without being killed. The concept of Configuration Space is used to define the mission space considering with range of weapons and detect range of UAV. UAV must visit whole given area to obtain the information and perform Coverage Path Planning for this. Based on threats to UAV and importance of information that will be obtained, area that UAV should visit first is defined. Grid Map is generated and mapping threat information to each grid for UAV path planning. On this study, coverage conditions and path planning procedures are presented based on the threat information on Grid Map, and mission space is expanded to improve detection efficiency. Finally, simulations are performed, and results are presented using the suggested UAV path planning method in this study.

고도화되는 전장 환경에서 적진의 정보는 군사 작전을 수행하는 데 있어 중요한 요소이다. 적진의 정보를 획득하기 위한 감시정찰을 목적으로 아군의 인력 손실이 없고 저 비용으로 임무에 투입이 가능한 무인항공기(UAV; Unmanned Aerial Vehicle, 이하 무인기) 운용이 늘어나고 있다. 무인기 임무 수행 환경은 대공위협이 존재하므로 무인기가 격추되지 않고 생존성을 보장할 수 있는 임무공간이 필요하다. 임무공간을 정의하기 위해서는 형상공간(Configuration Space) 개념을 활용하며, 적진의 대공방호영역 및 무인기가 탐지할 수 있는 범위를 고려한다. 무인기는 적진의 정보를 획득하기 위해 임무에 주어진 모든 영역을 방문해야 하며, 이를 위해 커버리지 경로 계획(Coverage Path Planning)을 수행한다. 무인기에 대한 위협 및 획득할 정보의 중요도를 바탕으로 무인기가 우선적으로 방문해야 할 영역을 정의하며, 격자지도를 생성하고 각 격자에 위협 정보를 매핑하여 경로 계획에 활용한다. 본 연구에서는 격자지도에 표시된 위협정보를 바탕으로 커버리지 조건 및 경로 계획 절차를 제시하며, 탐지 효율 향상을 위해 임무공간을 확장한다. 끝으로 본 연구에서 제시한 무인기 경로계획 방법에 대한 시뮬레이션을 수행하고, 관련된 결과를 제시한다.

Keywords

SHGSCZ_2019_v20n7_211_f0001.png 이미지

Fig. 1. Real Space

SHGSCZ_2019_v20n7_211_f0002.png 이미지

Fig. 2. Mission Space

SHGSCZ_2019_v20n7_211_f0003.png 이미지

Fig. 3. Detect Range on Grid Map

SHGSCZ_2019_v20n7_211_f0004.png 이미지

Fig. 4. Extension of Mission Space

SHGSCZ_2019_v20n7_211_f0005.png 이미지

Fig. 5. Simulation Steps

SHGSCZ_2019_v20n7_211_f0006.png 이미지

Fig. 6. Simulation Result

Table 1. Given Parameter for Simulation

SHGSCZ_2019_v20n7_211_t0001.png 이미지

Table 2. Calculated Parameter on Simulation

SHGSCZ_2019_v20n7_211_t0002.png 이미지

Table 3. Number of Grid on Each Space and Threat Information

SHGSCZ_2019_v20n7_211_t0003.png 이미지

Table 4. Percentage of Coverage Completion

SHGSCZ_2019_v20n7_211_t0004.png 이미지

Table 5. Percentage of Coverage Completion Before Extension of M

SHGSCZ_2019_v20n7_211_t0005.png 이미지

References

  1. I. Hawng, C. H. Lee, K. H. Im, "A study on our forces' countermeasures for UAVs activation", Defense & Technology, No. 445, pp.70-85, Mar, 2016.
  2. S. H. Park, J. H. Hong, H. J. Ha, C. K. Ryoo, W. Y. Shin, "Determination of Waypoints to Maximize the Survivability of UAV against Anti-air Threats", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 42, No. 2, pp.127-133, Feb, 2014. DOI: http://dx.doi.org/10.5139/JKSAS.2014.42.2.127
  3. B. S. Kim, C. K. Ryoo, H. C. Bang, Eulho Chung, "Optimal Path Planning for UAVs under Multiple Ground Threats", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 34, No. 1, pp. 74-80, Jan, 2006. DOI: http://dx.doi.org/10.5139/JKSAS.2006.34.1.074
  4. S. S. Jeong, D. S. Jang, H. J. Park, T. H. Seong, J. M. Ahn, "Optimal path planning and analysis for the maximization of multi UAVs survivability for missions involving multiple threats and locations", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 43, No. 6, pp.488-496, Jun, 2015. DOI: http://dx.doi.org/10.5139/JKSAS.2015.43.6.488
  5. H. R. Kim, B. I. Jeon, N. R. Lee, S. D. Choi, Y. K. Chang, "Development of Mission Analysis and Design Tool for ISR UAV Mission Planning", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 42, No. 2, pp.181-190, Feb, 2014. DOI: http://dx.doi.org/10.5139/JKSAS.2014.42.2.181
  6. Matthew Coombes, Wen-Hua Chen, Cunjia Liu, "Boustrophedon coverage path planning for UAV aerial surveys in wind", 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp.1563-1571, Jun, 2017. DOI: https://doi.org/10.1109/ICUAS.2017.7991469
  7. Soumya Vasisht and Mehran Mesbahi. "Trajectory Design and Coverage Control for Solar-Powered UAVs", AIAA Guidance, Navigation, and Control Conference, AIAA SciTech Forum, Jan, 2015. DOI: https://doi.org/10.2514/6.2015-1314
  8. Sai Chen, C. Y. Li, Shuo Zhuo, "A Distributed Coverage Algorithm for Multi-UAV with Average Voronoi Partition", 2017 17th International Conference on Control, Automation and Systems (ICCAS), pp.1083-1086, Oct, 2017. DOI: https://doi.org/10.23919/ICCAS.2017.8204377
  9. Ball, Robert E., "Fundamentals of Aircraft Combat Survivability Analysis and Design (2nd Edition)", pp.1-3, American Institute of Aeronautics and Astronautics, 2003. DOI: https://doi.org/10.2514/4.862519
  10. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, Lydia E. Kavraki, Sebastian Thrun, "Principles of Robot Motion-Theory, Algorithms, and Implementations", pp.13-15, 39-44, MIT Press, 2005. DOI: https://doi.org/10.1017/S0263574706212803
  11. Enric Galceran, Marc Carreras, "A survey on coverage path planning for robotics", Robotics and Autonomous Systems, Vol. 61, Issue 12, pp.1258-1276, Dec, 2013. DOI: https://doi.org/10.1016/j.robot.2013.09.004