DOI QR코드

DOI QR Code

A Study on the Improvement of the Control Circuit Design of Controllable Pitch Propeller

가변피치프로펠러의 제어회로 설계 개선에 관한 연구

  • Kim, Dong-Young (Naval Sea Systems Team 1, Defence Agency for Technology and Quality) ;
  • Kang, Gu-Heon (Naval Sea Systems Team 1, Defence Agency for Technology and Quality)
  • 김동영 (국방기술품질원 함정센터 함정1팀) ;
  • 강구헌 (국방기술품질원 함정센터 함정1팀)
  • Received : 2019.04.02
  • Accepted : 2019.07.05
  • Published : 2019.07.31

Abstract

The control circuit of the CPP applied to FFX Batch-I and LST-II may be capable of generating a backward pitch even when the grounding phenomenon occurs in the other system. The purpose of this study was to improve the CPP control circuit to maintain the pitch even in the event of grounding. Since the CPP control circuit changes the propeller angle with the voltage difference input, it has a design structure that can be vulnerable if the input voltage fluctuates instantaneously. In order to solve the above problem, a terminating resistor is applied to the end of the control wire and a signal converter is applied between the control wires, as a way to improve the CPP control circuit design. In order to verify that there is no problem in improving the CPP control circuit design, the CPP pitch change control was tested in the actual sailing commissioning with LST-II. Since the command pitch value and the feedback pitch value are very similar to each other, it is confirmed that the CPP control circuit is suitable for the control signal transmission because there is no problem in transmitting the control signal.

차기${\bigcirc}{\bigcirc}$함(FFX) Batch-I 및 차기${\bigcirc}{\bigcirc}$함(LST-II)에 적용된 가변피치프로펠러(CPP) 제어회로는 타 계통에서 접지 현상 발생 시 후진피치 발생이 가능할 수 있으므로, 접지 현상 발생 시에도 피치를 유지할 수 있도록 CPP 제어회로를 개선하는 것이 본 연구의 목적이었다. CPP 제어회로는 전압차이입력으로 프로펠러 각도를 변화시키므로 입력전압이 순간적으로 변동이 생기는 경우 취약할 수 있는 설계구조를 가지고 있었다. 위의 문제를 해결하기 위해서 CPP 제어회로 설계 개선 방안으로 제어전선의 끝단에 종단저항을 적용하고, 제어전선 사이에 Signal Converter를 적용하였다. 그리고 CPP 제어회로 설계 개선에 문제가 없는지 검증하기 위해, 차기${\bigcirc}{\bigcirc}$함(LST-II)으로 실제 항해 시운전에서 CPP 피치 변화 제어를 테스트 하였다. Command 피치 값과 Feedback 피치 값 사이는 매우 유사한 값을 보여주고 있으므로, CPP 제어회로의 제어신호 전달에는 문제가 없기에 적합한 개선방안으로 확인되었다.

Keywords

SHGSCZ_2019_v20n7_52_f0001.png 이미지

Fig. 1. Propeller Pitch

SHGSCZ_2019_v20n7_52_f0002.png 이미지

Fig. 2. Formula between propeller pitch and angle

SHGSCZ_2019_v20n7_52_f0003.png 이미지

Fig. 3. Controllable pitch propeller

SHGSCZ_2019_v20n7_52_f0004.png 이미지

Fig. 4. Blade cross section according to propeller pitch angle

SHGSCZ_2019_v20n7_52_f0005.png 이미지

Fig. 5. Control system diagram for propulsion

SHGSCZ_2019_v20n7_52_f0006.png 이미지

Fig. 6. System circuit diagram between IMCS and CPP LOP

SHGSCZ_2019_v20n7_52_f0007.png 이미지

Fig. 7. Control description between IMCS and CPP LOP

SHGSCZ_2019_v20n7_52_f0008.png 이미지

Fig. 8. Op-Amp circuit diagram inside MDSD

SHGSCZ_2019_v20n7_52_f0009.png 이미지

Fig. 9. Analysis of Op-Amp circuit diagram inside MDSD

SHGSCZ_2019_v20n7_52_f0010.png 이미지

Fig. 10. Ground loop caused by leakage current of electrical equipment

SHGSCZ_2019_v20n7_52_f0011.png 이미지

Fig. 11. Assuming input voltage cable is grounded

SHGSCZ_2019_v20n7_52_f0012.png 이미지

Fig. 12. Circuit analysis if the input voltage cable is grounded

SHGSCZ_2019_v20n7_52_f0013.png 이미지

Fig. 13. Assuming current flows from outside to the ground line

SHGSCZ_2019_v20n7_52_f0014.png 이미지

Fig. 14. Circuit analysis if current flows from outside to the ground line

SHGSCZ_2019_v20n7_52_f0015.png 이미지

Fig. 15. Installation of the terminating resistor at the end of the control wire

SHGSCZ_2019_v20n7_52_f0016.png 이미지

Fig. 16. Concept of application of signal converter to CPP control circuit

SHGSCZ_2019_v20n7_52_f0017.png 이미지

Fig. 17. Installation of the signal converter

SHGSCZ_2019_v20n7_52_f0018.png 이미지

Fig. 18. Signal converter installed in the CPP LOP for LST-II

SHGSCZ_2019_v20n7_52_f0019.png 이미지

Fig. 19. Propulsion sea trial test in LST-II

SHGSCZ_2019_v20n7_52_f0020.png 이미지

Fig. 20. CPP control signal ID trend

Table 1. Classification of results about the causes of CPP control circuit malfunction

SHGSCZ_2019_v20n7_52_t0001.png 이미지

Table 2. Cause and solution about problem

SHGSCZ_2019_v20n7_52_t0002.png 이미지

Table 3. Signal converter specification

SHGSCZ_2019_v20n7_52_t0003.png 이미지

Table 4. Signal ID list for CPP control signal trend identification

SHGSCZ_2019_v20n7_52_t0004.png 이미지

Table 5. Speed table according to lever

SHGSCZ_2019_v20n7_52_t0005.png 이미지

Table 6. Command and feedback pitch according to the speed lever

SHGSCZ_2019_v20n7_52_t0006.png 이미지

References

  1. S. Tarbiat, H. Ghassemi, M. Fadavie, "Numerical Prediction of Hydromechanical Behaviour of Controllable Pitch Propeller", International Journal of Rotating Machinery, vol. 2014, pp. 1-7. DOI: http://dx.doi.org/10.1155/2014/180725
  2. Michele Martelli, M. Figari, M. Altosole, S. Vignolo, "Controllable pitch propeller actuating mechanism, modeling and simulation", Journal of Engineering for the Maritime Environment, vol. 227, 2013 DOI: http://dx.doi.org/10.1177/1475090212468254
  3. Y. S. Choi, "Fundamental Circuit Theory", pp. 146-170, Hanbit Media, 2011.
  4. W. H. Hayt, J. E. Kemmerly, S. M. Durbin, "Engineering Circuit Analysis", 8/E, pp. 191-236, McGraw Hill Korea, 2013.
  5. O. Michio, H. S. Jung, "Noise Prevention and Countermeasures", pp. 1-348, Sung An Tang, 1997.
  6. J. Nemec, "Circuit termination methodologies and their characteristics", WESCON/97 Conference Proceedings, IEEE, Santa Clara, CA, USA, pp. 556-561, Nov. 1997. DOI: http://dx.doi.org/10.1109/WESCON.1997.632383
  7. I. Novak, "Reducing Simultaneous Switching Noise and EMI on Ground/Power Planes by Dissipative Edge Termination", IEEE Transactions on Advanced Packaging, vol. 22, no. 3, pp. 274-283, Aug. 1999. DOI: http://dx.doi.org/10.1109/6040.784475
  8. G. Knoedl, Jr, S. A. Rawls, L. J. Turgeon, J. W. Bess, "A monolithic signal isolator (for power convertors)", Proceedings, Fourth Annual IEEE Applied Power Electronics, IEEE, Baltimore, MD, USA, pp. 165-170, March 1989. DOI: http://dx.doi.org/10.1109/APEC.1989.36965
  9. M. Raimann, A. Peter, D. Mager, U. Wallrabe, J. G. Korvink, "Microtransformer Based Isolated Signal and Power Transmission", IEEE Transactions on Power Electronics, vol. 27, no. 9, pp. 3996-4004, Sept. 2012. DOI: http://dx.doi.org/10.1109/TPEL.2012.2189250
  10. N. Akiyama, Y. Kojima, M. Nemoto, S. Yukutake, T. Iwasaki, M. Amishiro, N. Kanekawa, A. Watanabe, Y. Takeuchi, "A High Voltage Monolithic Isolator for a Communication Network Interface", IEEE Transactions on Electron Devices, vol. 49, no. 5, pp. 895-901, May 2002. DOI: http://dx.doi.org/10.1109/16.998600