DOI QR코드

DOI QR Code

A Study of Intrinsic Alpha Rhythm, Electroencephalography, and Heart Rate Variability Index as Indicators of Cognitive Function and Health in Elderly Adults

노년기 인지기능 및 건강상태를 반영하는 지표로써 Alpha 고유리듬과 뇌파 및 HRV 지표와의 관계 연구

  • 심준영 (국제뇌교육종합대학원대학교 뇌교육학과)
  • Received : 2019.04.30
  • Accepted : 2019.07.05
  • Published : 2019.09.30

Abstract

This study was an examination of the relevance and clinical significance of electroencephalographic (EEG) indexes (e.g., mental/physical stress and attention) and indexes of heart rate variability (HRV) with regard to cognitive function and physiological health conditions in elderly people. A device was used to record two-channel EEGs of the frontal lobe and a one-channel ECG simultaneously. Subjects were 76 people average aged 73. The significant findings are as follows: First, subjects whose intrinsic alpha rhythm had high amplitude, regardless of peak, showed higher resistance to mental stress and lower physical stress than did subjects with low-amplitutde intrinsic alpha rhythm. Second, HRV, SDNN, and RMSSD indexes showed strong positive correlations between the two groups of subjects regardless of the division of groups. Third, the alpha asymmetry of the left and right sides of the brain in subjects with low-amplitude intrinsic alpha rhythm was larger, and the delta/alpha ratio (reflecting physical stress) and theta/sensorimotor rhythm (SMR) ratio (showing the decline in attention) were bigger. Fourth, the subjects in whom intrinsic alpha rhythm peak occurred during slow rhythm had a higher theta/SMR ratio than did subjects whose peak occurred during fast rhythm, which was related to a steeper decline in attention. Therefore, the presence or absence of intrinsic alpha rhythm peak and amplitude on quantitative EEG may be an index reflecting the cognitive function and physiological health of elderly people.

이 연구는 노년기 인지기능 및 생리적 건강상태와 관련 있는 정량화 뇌파의 Alpha 고유리듬 피크 위치 및 진폭의 출현 유무가 정신적·육체적 스트레스, 주의집중 등의 뇌파 지표들과 심박변이도 지표 간에 어떠한 관련성과 임상적 의미가 있는지 알아보고자 하였다. 이를 위하여 평균 73세 남녀 노인 76명을 대상으로 전두엽 2채널 뇌파와 1채널 심전도를 동시에 측정 가능한 장치를 이용하여 폐안시 EEG, HRV를 측정하였다. 의미있는 분석 결과는 다음과 같다. 첫 번째, Alpha 고유리듬피크 위치와 상관없이 고유리듬 진폭이 높게 잘 나타난 집단은 낮은 집단에 비해 정신적 스트레스에 대한 저항도는 높고, 육체적 스트레스는 낮게 나타나는 상관성을 보였다. 두 번째, 심박변이도의 HRV index, SDNN, RMSSD 지표는 집단 구분에 상관없이 공통적으로 서로 간 높은 양의 상관성을 보였다. 세 번째, Alpha 고유리듬 진폭이 잘 나타나지 않은 집단에서 좌·우뇌 Alpha 비대칭이 커질수록 육체적 스트레스를 반영하는 Delta/Alpha 비율과 주의집중 저하를 반영하는 Theta/SMR 비율도 커지는 상관성을 보였다. 네 번째, Alpha 고유리듬피크가 느린 리듬쪽에 위치한 집단은 빠른 리듬 쪽에 위치한 집단에 비해 Theta/SMR 비율이 높게 나타나 주의집중도 저하와 관련이 있음을 의미하였다. 따라서 정량화 뇌파의 Alpha 고유리듬 피크 위치 및 진폭의 출현 유무는 노년기 인지기능 및 생리적 건강상태를 반영하는 지표로 활용 가능성이 있음을 시사하였다.

Keywords

References

  1. Amoss, R. T. (2009). Frontal alpha and beta EEG power asymmetry and Iowa gambling task performance. Georgia State University Digital Archive, Psychology Theses.
  2. Bak, K. J., Yi, S. G., & Park, P. W. (2007). A reserch on the effect neurofeedback training before & after about emotional and attention deficit characteristics by timeseries linear analysis: for primary student. Journal of Information Technology Applications & Management, 14(4), 43-59.
  3. Braverman, E. R. (1990). Brain mapping: A short guide to interpretation, philosophy and future. Journal of Orthomolecular Medicine, 5(4), 189-197.
  4. Celesia, G. G., Kaufman, D., & Cone, S. (1987). Effects of age and sex on pattern electroencephalograms and visual evoked potentials. Electroencephalography and Clinical Neurophysiology, 68(3), 161-171. DOI: 10.1016/0168-5597(87)90023-2
  5. Davidson, R. J., Jackson, D. C., & Kalin, N. H. (2000). Emotion, plasticity, context and regulation: Perspectives from affective neuroscience. Psychological Bulletin, 126(6), 890-909. DOI: 10.1037/0033-2909.126.6.890
  6. Gotlib, I. H., Ranganath, C., & Rosenfeld, J. P. (1998). EEG alpha asymmetry, depression and cognitive functioning. Cognition and Emotion, 12(3), 449-478. DOI: 10.1080/026999398379673
  7. Hoffmann, E. (2012). New brain, new world. Hay House Publishing Company.
  8. Huang, H. C., Gau, M. L., Lin, W. C., & George, K. (2003). Assessing risk of falling in older adults. Pudlic Health Nursing, 20(5), 399-411. DOI: 10.1046/j.1525-1446.2003.20508.x
  9. Hughes, J. R., Shanmugham, S. Wetzel, L. C., Bellur, S., & Hughes, C. A. (1989). The relationship between EEG changes and cognitive functions in dementia: a study in a VA population. Clinical Electroencephalography, 20(2), 77-85. DOI: 10.1177/155005948902000204
  10. Jeste, M. D., Savla, G. N., Thompson, W. K., Vahia, I. V., Glorioso, D. K., Martin, A. S., Palmer, B. W., Rock, D., Golshan, S., Kraemer, H. C., & Depp, C. A. (2013). Association between older age and more successful aging: critical role of resilience and depression. American Journal of Psychiatry, 170(2), 188-196. DOI: 10.1176/appi.ajp.2012.12030386
  11. Kang, M. S., Park, H. C., & Kim, L. H. (2006). Comparison research of HRV between postpartum women and normal women. Journal of Oriental Neuropsychiatry, 17(2), 179-185.
  12. Kim, B. S., & Min, J. A. (2015). Use and interpretation of HRV in stress clinic. Panmuneducation, Seoul.
  13. Kim, C. G., Kim, H. T., & Lee, S. H. (2013). Clinical implications of EEG and ERP as biological markers for alzheimer's disease and mild cognitive impairment. Korean Journal of Biological Psychiatry, 20(4), 119-128.
  14. Kim, D. B., & Sohn, E. S. (2005). A meta-analysis of the variables related to depression in elderly. Journal of the Korean Gerontological Society, 25(4), 167-187.
  15. Kim, S. Y. (2003). Clinical characteristics of mild cognitive impairment. Journal of the Korean Dementia Association, 2(2), 96-100.
  16. Kim, W., Woo, J. M., & Chae, J. H. (2005). Heart rate variability in psychiatry. Journal of Korean Neuropsychiatr Association, 44(2), 176-184.
  17. Li, Y. S., Meyer, J. S., & Thornby, J. (2001). Depressive symptoms among cognitively normal versus cognitively impaired elderly subjects. International Journal of geriatric psychiatry, 16(5), 455-461. DOI: 10.1002/GPS.360
  18. Lovallo, W. R., & Thomas, T. L. (2000). Stress hormones in psychophysiological research: Emotional, behavioral, and cognitive implications. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds), Handbook of Psychophysiology (pp. 342-367). New York, NY, US: Cambridge University Press.
  19. Lubar, J. F. (1991). Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback & Self Regulation, 16(3), 201-225. DOI: 10.1007/bf01000016
  20. Nauta, W. J. (1972). Neural associations of the frontal cortex. Acta Neurobiologiae Experimentalis, 32(2), 125-140.
  21. Park, S. Y., & Ko, M. M. (2008). A Study on SEEG (statistical EEG analysis). Journal of Korean Date Analysis Society, 10(3), 1313-1325.
  22. Peniston, E. G., Marrinan, D. A., Deming, W. A., & Kulkosky, P. J. (1993). EEG alpha-theta brainwave synchronization in Vietnam theater veterans with combat-related post-traumatic stress disorder and alcohol abuse. Medical Psychotherapy: An International Journal, 6, 37-50.
  23. Penttila, M., Partanen, J. V., Soininen, H., & Riekkinen, P. J. (1985). Quantitative analysis of occipital EEG different stages of Alzheimer's disease. Electroencephalography and Clinical Neurophysiology, 60(1), 1-6. DOI: 10.1016/0013-4694(85)90942-3
  24. Prinz, P. N., & Vitiello, M. V. (1989). Dominant occipital (alpha) rhythm frequency in early stage Alzgeimer's disease and depression. Electroencephalography and Clinical Neurophysiology, 73(5), 427-432. DOI: 10.1016/0013-4694(89)90092-8
  25. Pucci, E., Belardinelli, N., Cacchio, G., Signorino, M., & Angeleri, F. (1999). EEG power spectrum differences in early and late onset forms of Alzheimer's disease. Clinical Neurophysiology, 110, 621-631. DOI: 10.1016/s1388-2457(98)00054-6
  26. Rossi, P. M. (2009). Implications of brain plasticity to brain-machine interface operation: A potential paradox? International Review of Neurobiology, 86, 81-90. DOI: 10.1016/s0074-7742(09)86006-6
  27. Shim, J. Y. (2012). Comparison of EEG characteristics between short and long-term practitioners during Qigong practice. Journal of Korean Alliance of Martial Arts, 14(3), 209-228. DOI: 10.35277/kama.2012.14.3.209
  28. Sin, M. G. (2009). Effects of an exercise program on frontal lobe cognitive function in elders. Journal of Korean Academy of Nursing, 39(1), 107-115. DOI: 10.4040/jkan.2009.39.1.107
  29. Statistics Korea (2016). Future population estimation. Statistics Korea.
  30. Statistics Korea (2018). 2018 aging statistics. Statistics Korea.
  31. Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043-1065. DOI: 10.1161/01.CIR.93.5.1043
  32. Wilson, R. S., Arnold, S. E., Schneider, J. A., Li, Y., & Bennett, D. A. (2007). Chronic distress, age-related neuropathology, and late-life dementia. Psychosomatic Medicine, 69(1), 47-53. DOI: 10.1097/01.psy.00002502264.25017.21