DOI QR코드

DOI QR Code

위성항법 신호를 이용한 지진에 의한 전리층 교란 실시간 검출 기법 연구

Real-Time Detection of Seismic Ionospheric Disturbance Using Global Navigation Satellite System Signal

  • Song, Junesol (Ecole Nationale de l'Aviation Civile (ENAC)) ;
  • Kang, Seon-Ho (School of Mechanical and Aerospace Engineering and SNU-IAMD, Seoul National University) ;
  • Han, Deok-Hwa (School of Mechanical and Aerospace Engineering and SNU-IAMD, Seoul National University) ;
  • Kim, Bu-Gyeom (School of Mechanical and Aerospace Engineering and SNU-IAMD, Seoul National University) ;
  • Kee, Changdon (School of Mechanical and Aerospace Engineering and SNU-IAMD, Seoul National University)
  • 투고 : 2019.02.12
  • 심사 : 2019.07.27
  • 발행 : 2019.08.01

초록

본 연구에서는 위성항법 신호를 활용하여 전리층 교란 관측을 통한 실시간 지진 발생 검출에 대한 연구를 수행한다. 위성항법 신호를 활용하여 추정한 전리층 지연을 이용하여 전리층 교란 모니터를 선정하고, 실시간 검출을 위한 교란 판단 기준값(threshold)을 계산하는 방법을 소개한다. 또한, cycle slip 등 다른 오차 요인에 의하여 발생하는 전리층 변화와 지진에 의해 발생하는 전리층 변화를 구분하기 위하여, 지진에 의한 파동 특성을 이용하여 지진에 의한 전리층 교란 검출 판단 기준을 제시한다. 한국 및 일본에 설치되어 있는 47개의 기준국으로부터 수집한 측정치를 활용하여 제안된 알고리즘의 성능 검증을 수행한다.

In this paper, we focus on the real-time detection method of a seismic ionospheric disturbance using Global Navigation Satellite System (GNSS) signal. First, the monitor for the detection of the seismic ionospheric disturbance is studied based on the estimated ionospheric delay using the GNSS signals. And then, the threshold for the automatic detection is computed. Moreover, to discriminate the seismic ionospheric disturbance against the other ionospheric anomalies due to other error sources such as cycle slips, the signatures of the ionospheric perturbation caused by the seismic wave is investigated. Based on the observation, the detection strategy is proposed. Using GPS observations collected from the 47 permanent stations in South Korea and Japan, the proposed real-time detection method is evaluated.

키워드

참고문헌

  1. Choi, B.-K., and Lee, S. J., "Anomalous ionospheric disturbances over South Korea prior to the 2011 Tohoku earthquake," Advances in Space Research, Vol. 57, 2016, pp. 302-308. https://doi.org/10.1016/j.asr.2015.10.025
  2. Komjath, A., Galvan, D. A., Stephens, P., Butala, M. D., Akopian, V., Wilson, B., Verkhoglyadova, O., Mannucci, A. J., and Hickey, M., "Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study," Earth Planets Space, Vol. 64, 2012, pp. 1287-1294. https://doi.org/10.5047/eps.2012.08.003
  3. Heki, K., "Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbances," Geophysical Research Letters, Vol. 33, L14303, 2006. https://doi.org/10.1029/2006GL026249
  4. Jin, S., Occhipinti, G., and Jin, R., "GNSS ionospheric seismology: Recent observation evidences and characteristics," Earth-Science Review, Vol. 147, 2015, pp. 54-64. https://doi.org/10.1016/j.earscirev.2015.05.003
  5. Park, J., Grejner-Brzezinska, A., Von Frese, R. R. B., and Morton, Y., "GPS Discrimination of Traveling Ionospheric Disturbances from Underground Nuclear Explosions and Earthquakes," Navigation, Vol. 61, No. 2, 2014, pp. 125-134. https://doi.org/10.1002/navi.56
  6. Sun, K. Y., Yoon, M. S., and Lee, J. Y., "Statistical analysis of GNSS based traveling ionospheric disturbance associated with natural hazards case study: 2011 Tohoku earthquake," Proceedings of Korean Navigation Institute Conference (domestic), October 2015.
  7. Yang, Y.-M., Meng, X., Komjathy, A., Verkholyadova, O., Langley, R. B., Tsurutani, B. T., and Mannucci, A. J., "Tohoku-Oki earthquake caused major ionospheric disturbances at 450km altitude over Alask," Radio Science, Vol. 49, 2014.
  8. Hines, C. O., "Internal atmospheric gravity waves at ionospheric heights," Canadian Journal of Physics, Vol. 38, No. 11, 1960, pp. 1441-1481. https://doi.org/10.1139/p60-150
  9. Doherty, P., Ra, E., Klobuchar, J., and El-Arini, M. B., "Statistics of time rate of change of ionospheric range delay," Proceedings of ION GPS-94, September 1994, pp. 1589-1598.