참고문헌
- Baeza, L. and Ouyang, H. (2009), "Vibration of a truss structure excited by a moving oscillator", J. Sound Vib., 321(3-5), 721-734. https://doi.org/10.1016/j.jsv.2008.09.049.
- Celebi, E. (2006), "Three-dimensional modelling of train-track and sub-soil analysis for surface vibrations due to moving loads", Appl. Math. Comput., 179(1), 209-230. https://doi.org/10.1016/j.amc.2005.11.095.
- Chang, T.P. (2014), "Stochastic dynamic finite element analysis of bridge-vehicle system subjected to random material properties and loadings", Appl. Math. Comput., 242, 20-35. https://doi.org/10.1016/j.amc.2014.05.038.
- Dimitrovova, Z. (2018), "Complete semi-analytical solution for a uniformly moving mass on a beam on a two-parameter visco-elastic foundation with non-homogeneous initial conditions", Int. J. Mech. Sci.. 144, 283-311. https://doi.org/10.1016/j.ijmecsci.2018.05.055.
- Eftekhari, S. (2016), "A modified differential quadrature procedure for numerical solution of moving load problem", Proceedings of the Institution of Mechanical Engineers Part C, 230(5), 715-731. https://doi.org/10.1177/0954406215584630.
- Fryba, L. (2013), Vibration of Solids and Structures under Moving Loads, Springer Science and Business Media, Germany.
- Gbadeyan, J. and Dada, M. (2011), "A comparison of dynamic responses of three versions of moving load problem involving elastic rectangular plates", J. Vib. Control, 17(6), 903-915. https://doi.org/10.1177/1077546310377910.
- Ghafoori, E., Kargarnovin, M.H. and Ghahremani, A.R. (2011), "Dynamic responses of a rectangular plate under motion of an oscillator using a semi-analytical method", J. Vib. Control, 17(9), 1310-1324. https://doi.org/10.1177/1077546309358957.
- Ghazvini, T., Nikkhoo, A., Allahyari, H. and Zalpuli, M. (2016), "Dynamic response analysis of a thin rectangular plate of varying thickness to a traveling inertial load", J. Brazilian Soc. Mech. Sci. Eng.. 38(2), 403-411. https://doi.org/10.1007/s40430-015-0409-2.
- Hassanabadi, M.E., Amiri, J.V. and Davoodi, M. (2014), "On the vibration of a thin rectangular plate carrying a moving oscillator", Scientia Iranica. Transaction A, 21(2), 284.
- Hassanabadi, M.E., Attari, K., Nikkhoo, A. and Mariani, S. (2016), "Resonance of a rectangular plate influenced by sequential moving masses", Coupled Syst. Mech., 5(1), 87-100. http://dx.doi.org/10.12989/csm.2016.5.1.087.
- Hassanabadi, M.E., Attari, N.K., Nikkhoo, A. and Baranadan, M. (2015), "An optimum modal superposition approach in the computation of moving mass induced vibrations of a distributed parameter system", Proceedings of the Institution of Mechanical Engineers, Part C, 229(6), 1015-1028. https://doi.org/10.1177/0954406214542968.
- Jiang, J.Q. (2011), "Transient responses of Timoshenko beams subject to a moving mass", J. Vib. Control, 17(13), 1975-1982. https://doi.org/10.1177/1077546310382808.
- Khoraskani, R.A., Mofid, M., Azam, S.E. and Hassanabadi, M.E. (2016), "A new simplified formula in prediction of the resonance velocity for multiple masses traversing a thin beam", Scientia Iranica Transaction A, 23(1), 133. https://doi.org/10.24200/sci.2016.2104
- Klasztorny, M. and Langer, J. (1990), "Dynamic response of single-span beam bridges to a series of moving loads", Earthq. Eng. Struct. Dynam., 19(8), 1107-1124. https://doi.org/10.1002/eqe.4290190803.
- Lee, K. and Chung, J. (2014), "Dynamic models for the contact analysis of a tensioned beam with a moving oscillator", Proceedings of the Institution of Mechanical Engineers, Part C, 28(4), 676-689. https://doi.org/10.1177/0954406213489785.
- Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vib., 31(3), 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2.
- Lotfollahi-Yaghin, M.A., Kafshgarkolaei, H.J., Allahyari, H. and Ghazvini, T. (2015), "On the absolute maximum dynamic response of a beam subjected to a moving mass", Struct. Eng. Mech., 54(1), 55-57. http://dx.doi.org/10.12989/sem.2015.54.1.055.
- Lu, Z. and Liu, J. (2013), "Parameters identification for a coupled bridge-vehicle system with spring-mass attachments", Appl. Math. Comput., 219(17), 9174-9186. https://doi.org/10.1016/j.amc.2013.03.047.
- Luo, W.L., Xia, Y. and Zhou, X.Q. (2018), "A general closed-form solution to a Timoshenko beam on elastic foundation under moving harmonic line load", Struct. Eng. Mech., 66(3), 387-397. http://dx.doi.org/10.12989/sem.2018.66.3.387.
- Malekzadeh, P. and Monajjemzadeh, S. (2015), "Nonlinear response of functionally graded plates under moving load", Thin-Walled Struct., 96, 120-129. https://doi.org/10.1016/j.tws.2015.07.017.
- Mamandi, A., Mohsenzadeh, R. and Kargarnovin, M.H. (2015), "Nonlinear dynamic analysis of a rectangular plate subjected to accelerated/decelerated moving load", J. Theoretic. Appl. Mech., 53(1), 151-166.
- Michaltsos, G. and Kounadis, A. (2001), "The effects of centripetal and Coriolis forces on the dynamic response of light bridges under moving loads", J. Vib. Control., 7(3), 315-326. https://doi.org/10.1177/107754630100700301.
- Mohebpour, S., Malekzadeh, P. and Ahmadzadeh, A. (2011), "Dynamic analysis of laminated composite plates subjected to a moving oscillator by FEM", Compos. Struct., 93(6), 1574-1583. https://doi.org/10.1016/j.compstruct.2011.01.003.
- Nikkhoo, A., Hassanabadi, M.E., Azam, S.E. and Amiri, J.V. (2014), "Vibration of a thin rectangular plate subjected to series of moving inertial loads", Mech. Res. Communications, 55, 105-113. https://doi.org/10.1016/j.mechrescom.2013.10.009.
- Nikkhoo, A. and Rofooei, F.R. (2012), "Parametric study of the dynamic response of thin rectangular plates traversed by a moving mass", Acta Mechanica, 223(1), 15-27. https://doi.org/10.1007/s00707-011-0547-2.
- Ouyang, H. (2011), "Moving-load dynamic problems: A tutorial (with a brief overview)", Mech. Syst. Signal Processing, 25(6), 2039-2060. https://doi.org/10.1016/j.ymssp.2010.12.010.
- Pesterev, A., Bergman, L., Tan, C., Tsao, T.C. and Yang, B. (2003), "On asymptotics of the solution of the moving oscillator problem", J. Sound Vib., 260(3), 519-536. https://doi.org/10.1016/S0022-460X(02)00953-7.
- Pesterev, A., Yang, B., Bergman, L. and Tan, C.A. (2001), "Response of elastic continuum carrying multiple moving oscillators", J. Eng. Mech., 127(3), 260-265. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(260).
- Piccardo, G., Tubino, F.J.S.E. and Mechanics (2012), "Dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads", Struct. Eng. Mech., 44(5), 681-704. http://dx.doi.org/10.12989/sem.2012.44.5.681.
- Raftoyiannis, I.G., Avraam, T.P. and Michaltsos, G.T. (2012), "A new approach for loads moving on infinite beams resting on elastic foundation", J. Vib. Control, 18(12), 1828-1836. https://doi.org/10.1177/1077546311426440.
- Rofooei, F.R., Enshaeian, A. and Nikkhoo, A. (2017), "Dynamic response of geometrically nonlinear, elastic rectangular plates under a moving mass loading by inclusion of all inertial components", J. Sound Vib,. 394, 497-514. https://doi.org/10.1016/j.jsv.2017.01.033.
- Roshandel, D., Mofid, M. and Ghannadiasl, A. (2015), "Dynamic response of a non-uniform Timoshenko beam, subjected to moving mass", Proceedings of the Institution of Mechanical Engineers, Part C, 229(14), 2499-2513. https://doi.org/10.1177/0954406214561049.
- Shadnam, M., Mofid, M. and Akin, J. (2001), "On the dynamic response of rectangular plate, with moving mass", Thin-walled Struct., 39(9), 797-806. https://doi.org/10.1016/S0263-8231(01)00025-8.
- Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.
- Simsek, M., Aydin, M., Yurtcu, H. and Reddy, J. (2015), "Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory", Acta Mechanica, 226(11), 3807-3822. https://doi.org/10.1007/s00707-015-1437-9.
- Sorrentino, S. and Catania, G. (2018), "Dynamic analysis of rectangular plates crossed by distributed moving loads", Math. Mech. Solids., 23(9), 1291-1302. https://doi.org/10.1177/1081286517719120.
- Takabatake, H. (2013), "Effects of dead loads on dynamic analyses of beams subject to moving loads", Earthq. Struct., 5(5), 589-605. http://dx.doi.org/10.12989/eas.2013.5.5.589.
- Thai-Hoang, C., Nguyen-Thanh, N., Nguyen-Xuan, H. and Rabczuk, T. (2011), "An alternative alpha finite element method with discrete shear gap technique for analysis of laminated composite plates", Appl. Math. Comput., 217(17), 7324-7348. https://doi.org/10.1016/j.amc.2011.02.024.
- Torkan, E., Pirmoradian, M. and Hashemian, M. (2018), "On the parametric and external resonances of rectangular plates on an elastic foundation traversed by sequential masses", Arch. Appl. Mech., 88(8), 1411-1428. https://doi.org/10.1007/s00419-018-1379-5.
- Yamchelou, M.T., Nikbin, I.M., Zareian, H. and Charkhtab, S. (2017), "Assessing absolute maximum vibration amplitude of a rectangular plate subjected to a moving mass", Iranian J. Sci. Technol., Trans. Civil Eng., 41(2), 135-147.
- Yamchelou, M.T. and Nouri, G. (2016), "Spectral analysis of dynamic response of a thin beam subjected to a varying speed moving mass", J. Mech. Sci.Technol., 30(7), 3009-3017. https://doi.org/10.1007/s12206-016-0609-4.