References
- Abaqus Theory Manual (2002), ABAQUS v.6.3.1, Hillerborg, Hibbit, Karlsson and Sorensen, Inc.
- Alfarah, B., Lopez-Almansa, F. and Oller, S. (2017), "New methodology for calculating damage variables evolution in plastic damage model for RC structures", Eng. Struct., 132, 70-86. https://doi.org/10.1016/j.engstruct.2016.11.022.
- Belletti, B., Walraven, J.C. and Trapani, F. (2015), "Evaluation of compressive membrane action effects on punching shear resistance of reinforced concrete slabs", Eng. Struct., 95, 25-39. https://doi.org/10.1016/j.engstruct.2015.03.043.
- Bijak (Uzarska), I. (2008), "Degradacja sztywnosci plyt zelbetowych w procesie krotkotrwalych obciazen niskocyklicznych", Ph.D. Dissertation, Kielce University of Technology, Kielce, Poland.
- CEB-FIP Model Code 1990 (1993), CEB-FIP Model Code 1990, Bulletin d'information, no. 1996; International Federation for Structural Concrete; Lausanne, Switzerland.
- Cincio, A. and Wawrzynek, A. (2003), "Plastyczno-kruchy degradacyjny model betonu w symulacjach numerycznych konstrukcji obciazonych cyklicznie", Sci. Papers Silesian U. Technol., 1-11.
- Feenstra, P.H. (1993), "Computational aspects of biaxial stress in plain and reinforced concrete", Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands.
- Genikomsou, A.S. and Polak, M.A. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS", Eng. Struct., 98, 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016.
- Genikomsou, A.S. and Polak, M.A. (2017), "Finite element simulation of concrete slabs with various placement and amount of shear bolts", Procedia Eng., 193, 313-320. https://doi.org/10.1016/j.proeng.2017.06.219.
- Godlewski, G. L. (2007), "Analiza wplywu Dmax na parametry mechaniki pekania betonow wapiennych okreslane przy trojpunktowym zginaniu", Budownictwo i Architektura, 1, 5-16. https://doi.org/10.35784/bud-arch.2298
- Goh, C.Y.M. and Hrynyk, T.D. (2018), "Numerical investigation of the punching resistance of reinforced concrete flat plates", J. Struct. Eng., 144(10), https://doi.org/10.1061/(ASCE)ST.1943-541X.0002142.
- Jankowiak, T. and Lodygowski, T. (2005), "Identification of parameters of concrete damage plasticity constitutive model", Foundations of Civil and Environmental Engineering, 6, 53-69.
- Jiang, J.F. and Wu, Y.F. (2012), "Identification of material parameters for Drucker-Prager plasticity model for FRP confined circular concrete columns", J. Solids Struct., 49(3-4), 445-456. https://doi.org/10.1016/j.ijsolstr.2011.10.002.
- Kmiecik, P. and Kaminski, M. (2011), "Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration", Arch. Civil Mech. Eng., 11(3), 623-636. https://doi.org/10.1016/S1644-9665(12)60105-8.
- Korol, E., Tejchman, J. and Mroz, Z. (2017), "Experimental and numerical assessment of size effect in geometrically similar slender concrete beams with basalt reinforcement", Eng. Struct., 141, 272-291. https://doi.org/10.1016/j.engstruct.2017.03.011.
- Kossakowski, P.G. (2014a), "Stress Modified Critical Strain criterion for S235JR steel at low initial stress triaxiality", J. Theoretical Appl. Mech., 52(4), 995-1006. https://doi.org/10.15632/jtam-pl.52.4.995.
- Kossakowski, P.G. (2014b), "An analysis of the Tvergaard parameters at low initial stress triaxiality for S235JR steel", Polish Maritime Res., 21(4), 100-107. https://doi.org/10.2478/pomr-2014-0046.
- Kossakowski P.G. (2007), "Influence of anisotropy on the energy release rate GI for highly orthotropic materials", J. Theoretical Appl. Mech., 45(4), 739-752.
- Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
- Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", J. Solid Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
- Oller, S., Onate, E., Oliver, J. and Lubliner, J. (1990), "Finite element nonlinear analysis of concrete Structure using a plastic-damage model", Eng. Fracture Mechanics, 35(1/2/3), 219-231. https://doi.org/10.1016/0013-7944(90)90200-Z.
- Majewski, S. (2003), Mechanika betonu konstrukcyjnego w ujeciu sprezysto -plastycznym, Wydawnictwo Politechniki Slaskiej, Gliwice, Poland.
- Oluokun, F.A. (1991), "Prediction of concrete tensile strength from compressive strength: An evaluation of existing relations for normal weight concrete", ACI Mater. J., 88(3), 302-309.
- Pamin, J.K. (1994), "Gradient-Dependent Plasticity In numerical simulation of localization phenomena", Ph.D. Dissertation, Delf University of Technology, Delft, the Netherlands.
- Stankiewicz, A. and Pamin, J. (2001), "Simulation of instabilities in non-softening Drucker-Prager plasticity", Comput. Assisted Mech. Eng. Sci., 8(1),183-204.
- Szarlinski, J., Winnicki, A. and Podles, K. (2002), Konstrukcje z betonu w plaskich stanach, Cracow University of Technology, Cracow, Poland.
- Szczecina, M. and Winnicki, A. (2017), "Relaxation time in CDP model used for analyses of RC structures", Procedia Eng., 193, 369-376. https://doi.org/10.1016/j.proeng.2017.06.226.
- Wosatko, A., Pamin J. and Polak, M.A. (2015), "Application of damage-plasticity models in finite element analysis of punching shear", Comput. Struct., 151, 73-85. https://doi.org/10.1016/j.compstruc.2015.01.008.
- Wosatko, A., Genikomsou, A., Pamin, J., Polak, M.A. and Winnicki, A. (2018), "Examination of two regularized damage-plasticity models for concrete with regard to crack closing", Eng. Fracture Mech., 194, 190-211. https://doi.org/10.1016/j.engfracmech.2018.03.002.