DOI QR코드

DOI QR Code

Numerical modeling of an orthotropic RC slab band system using the Barcelona model

  • Kossakowski, Pawel G. (Department of Strength of Materials and Concrete and Bridge Structures, Kielce University of Technology) ;
  • Uzarska, Izabela (Department of Strength of Materials and Concrete and Bridge Structures, Kielce University of Technology)
  • Received : 2018.10.26
  • Accepted : 2019.01.23
  • Published : 2019.07.25

Abstract

Numerical modeling of reinforced concrete structures is a difficult engineering problem, primarily because of the material inhomogeneity. The behaviour of a concrete element with reinforcement can be analyzed using, for example, the Barcelona model, which according to the literature, is one of the most suitable models for this purpose. This article compares the experimental data obtained for an orthotropic concrete slab band system with those predicted numerically using Concrete Damage Plasticity model. Abaqus package was used to perform the calculations.

Keywords

References

  1. Abaqus Theory Manual (2002), ABAQUS v.6.3.1, Hillerborg, Hibbit, Karlsson and Sorensen, Inc.
  2. Alfarah, B., Lopez-Almansa, F. and Oller, S. (2017), "New methodology for calculating damage variables evolution in plastic damage model for RC structures", Eng. Struct., 132, 70-86. https://doi.org/10.1016/j.engstruct.2016.11.022.
  3. Belletti, B., Walraven, J.C. and Trapani, F. (2015), "Evaluation of compressive membrane action effects on punching shear resistance of reinforced concrete slabs", Eng. Struct., 95, 25-39. https://doi.org/10.1016/j.engstruct.2015.03.043.
  4. Bijak (Uzarska), I. (2008), "Degradacja sztywnosci plyt zelbetowych w procesie krotkotrwalych obciazen niskocyklicznych", Ph.D. Dissertation, Kielce University of Technology, Kielce, Poland.
  5. CEB-FIP Model Code 1990 (1993), CEB-FIP Model Code 1990, Bulletin d'information, no. 1996; International Federation for Structural Concrete; Lausanne, Switzerland.
  6. Cincio, A. and Wawrzynek, A. (2003), "Plastyczno-kruchy degradacyjny model betonu w symulacjach numerycznych konstrukcji obciazonych cyklicznie", Sci. Papers Silesian U. Technol., 1-11.
  7. Feenstra, P.H. (1993), "Computational aspects of biaxial stress in plain and reinforced concrete", Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands.
  8. Genikomsou, A.S. and Polak, M.A. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS", Eng. Struct., 98, 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016.
  9. Genikomsou, A.S. and Polak, M.A. (2017), "Finite element simulation of concrete slabs with various placement and amount of shear bolts", Procedia Eng., 193, 313-320. https://doi.org/10.1016/j.proeng.2017.06.219.
  10. Godlewski, G. L. (2007), "Analiza wplywu Dmax na parametry mechaniki pekania betonow wapiennych okreslane przy trojpunktowym zginaniu", Budownictwo i Architektura, 1, 5-16. https://doi.org/10.35784/bud-arch.2298
  11. Goh, C.Y.M. and Hrynyk, T.D. (2018), "Numerical investigation of the punching resistance of reinforced concrete flat plates", J. Struct. Eng., 144(10), https://doi.org/10.1061/(ASCE)ST.1943-541X.0002142.
  12. Jankowiak, T. and Lodygowski, T. (2005), "Identification of parameters of concrete damage plasticity constitutive model", Foundations of Civil and Environmental Engineering, 6, 53-69.
  13. Jiang, J.F. and Wu, Y.F. (2012), "Identification of material parameters for Drucker-Prager plasticity model for FRP confined circular concrete columns", J. Solids Struct., 49(3-4), 445-456. https://doi.org/10.1016/j.ijsolstr.2011.10.002.
  14. Kmiecik, P. and Kaminski, M. (2011), "Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration", Arch. Civil Mech. Eng., 11(3), 623-636. https://doi.org/10.1016/S1644-9665(12)60105-8.
  15. Korol, E., Tejchman, J. and Mroz, Z. (2017), "Experimental and numerical assessment of size effect in geometrically similar slender concrete beams with basalt reinforcement", Eng. Struct., 141, 272-291. https://doi.org/10.1016/j.engstruct.2017.03.011.
  16. Kossakowski, P.G. (2014a), "Stress Modified Critical Strain criterion for S235JR steel at low initial stress triaxiality", J. Theoretical Appl. Mech., 52(4), 995-1006. https://doi.org/10.15632/jtam-pl.52.4.995.
  17. Kossakowski, P.G. (2014b), "An analysis of the Tvergaard parameters at low initial stress triaxiality for S235JR steel", Polish Maritime Res., 21(4), 100-107. https://doi.org/10.2478/pomr-2014-0046.
  18. Kossakowski P.G. (2007), "Influence of anisotropy on the energy release rate GI for highly orthotropic materials", J. Theoretical Appl. Mech., 45(4), 739-752.
  19. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
  20. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", J. Solid Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  21. Oller, S., Onate, E., Oliver, J. and Lubliner, J. (1990), "Finite element nonlinear analysis of concrete Structure using a plastic-damage model", Eng. Fracture Mechanics, 35(1/2/3), 219-231. https://doi.org/10.1016/0013-7944(90)90200-Z.
  22. Majewski, S. (2003), Mechanika betonu konstrukcyjnego w ujeciu sprezysto -plastycznym, Wydawnictwo Politechniki Slaskiej, Gliwice, Poland.
  23. Oluokun, F.A. (1991), "Prediction of concrete tensile strength from compressive strength: An evaluation of existing relations for normal weight concrete", ACI Mater. J., 88(3), 302-309.
  24. Pamin, J.K. (1994), "Gradient-Dependent Plasticity In numerical simulation of localization phenomena", Ph.D. Dissertation, Delf University of Technology, Delft, the Netherlands.
  25. Stankiewicz, A. and Pamin, J. (2001), "Simulation of instabilities in non-softening Drucker-Prager plasticity", Comput. Assisted Mech. Eng. Sci., 8(1),183-204.
  26. Szarlinski, J., Winnicki, A. and Podles, K. (2002), Konstrukcje z betonu w plaskich stanach, Cracow University of Technology, Cracow, Poland.
  27. Szczecina, M. and Winnicki, A. (2017), "Relaxation time in CDP model used for analyses of RC structures", Procedia Eng., 193, 369-376. https://doi.org/10.1016/j.proeng.2017.06.226.
  28. Wosatko, A., Pamin J. and Polak, M.A. (2015), "Application of damage-plasticity models in finite element analysis of punching shear", Comput. Struct., 151, 73-85. https://doi.org/10.1016/j.compstruc.2015.01.008.
  29. Wosatko, A., Genikomsou, A., Pamin, J., Polak, M.A. and Winnicki, A. (2018), "Examination of two regularized damage-plasticity models for concrete with regard to crack closing", Eng. Fracture Mech., 194, 190-211. https://doi.org/10.1016/j.engfracmech.2018.03.002.