DOI QR코드

DOI QR Code

Ag 담지된 LaSrCoFeO3 섬유상 perovskite 촉매의 탄소 입자상 물질의 산화반응

Ag-Loaded LaSrCoFeO3 Perovskite Nano-Fibrous Web for Effective Soot Oxidation

  • 이찬민 (한국생산기술연구원 청정생산시스템연구소 지능형청정소재 그룹) ;
  • 전유권 ;
  • 황호정 (연세대학교 화공생명공학과) ;
  • 지윤성 (연세대학교 화공생명공학과) ;
  • 권오찬 (연세대학교 화공생명공학과) ;
  • 전옥성 (연세대학교 화공생명공학과) ;
  • 설용건 (연세대학교 화공생명공학과)
  • Lee, Chanmin (Research Institute of Sustainable Manufacturing System, Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology) ;
  • Jeon, Yukwon (School of Chemistry, University of St Andrews) ;
  • Hwang, Ho Jung (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Ji, Yunseong (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kwon, Ohchan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Jeon, Ok Sung (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 투고 : 2019.03.04
  • 심사 : 2019.04.10
  • 발행 : 2019.08.01

초록

디젤엔진 시스템은 미세먼지 배출의 엄격해진 저감/제어 기준을 충족하기 위해서 산화촉매는 매우 중요한 기술 중에 하나이다. 본 연구에서는 효율적인 soot산화의 촉매로 Ag 나노입자가 loading된 $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ 섬유상 web 촉매를 제시하였다. 제조된 촉매는 FE-SEM, EDS mapping, XRD, XPS 분석을 통해 특성을 평가하였다. Soot 산화성능측정결과 Ag의 효율적인 촉매특성과 증가된 soot입자와 표면의 접촉면적으로 인하여 50% 산화온도 평가($T_{50}=490^{\circ}C$)에서 자연적인 산화보다 $151^{\circ}C$ 가속화된 것을 확인하였다. 따라서 Ag가 loading된 촉매와 3차원적인 web 구조는 soot 산화에 효율적인 촉매후보군으로 확인하였다.

The catalytic combustion of particulate matter (PM) is one of the key technologies to meet emission standards of diesel engine system. Therefore, we herein suggest Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst. They were produced by the electrospinning method. FE-SEM, EDS mapping, XRD, XPS were studied to investigate the crystal and morphological structures of loaded Ag particles and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst. Following the catalytic soot oxidation, we found that the Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskiteweb catalyst showed the higher catalytic activities (e.g., $T_{50}=490^{\circ}C$) than the only $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst (e.g., $T_{50}=586^{\circ}C$). Thus, this finding suggests that Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst can be a promising candidate for enhancing the soot oxidation.

키워드

HHGHHL_2019_v57n4_584_f0001.png 이미지

Fig. 1. SEM images of electro-spun nanofibers and fiber diameter distribution: (a-c) LaSrCoFe/PVP nanofibers web and (d-f) La0.6Sr0.4Co0.2Fe0.8O3 perovskite nanofibrous web calcined at 800 ℃.

HHGHHL_2019_v57n4_584_f0002.png 이미지

Fig. 2. SEM and EDS mapping images of 4.5 wt% Ag loaded La0.6Sr0.4Co0.2Fe0.8O3 perovskite nanofibrous web.

HHGHHL_2019_v57n4_584_f0003.png 이미지

Fig. 3. XRD patterns of 4.5 wt% Ag loaded La0.6Sr0.4Co0.2Fe0.8O3 and only La0.6Sr0.4Co0.2Fe0.8O3 perovskite nanofibrous webs.

HHGHHL_2019_v57n4_584_f0004.png 이미지

Fig. 4. XPS spectra of 4.5 wt% Ag loaded La0.6Sr0.4Co0.2Fe0.8O3 and only La0.6Sr0.4Co0.2Fe0.8O3 perovskite nanofibrous webs.

HHGHHL_2019_v57n4_584_f0005.png 이미지

Fig. 5. Thermo-gravimetric analysis (TGA) results for soot oxidation of mixture (catalyst and soot): 4.5 wt% Ag loaded La0.6Sr0.4Co0.2Fe0.8O3 nanofibrous web, La0.6Sr0.4Co0.2Fe0.8O3 nanofibrous web and only carbon black.

참고문헌

  1. Dockery, D. W., "Health Effects of Particulate Air Pollution," Ann Epidemiol, 19(4), 257-263(2009). https://doi.org/10.1016/j.annepidem.2009.01.018
  2. Koltsakis, G. C. and Stamatelos, A. M., "Catalytic Automotive Exhaust Aftertreatment," Prog. Energy Combust. Sci., 23(1), 1-39 (1997). https://doi.org/10.1016/S0360-1285(97)00003-8
  3. Gorsmann, C., "Catalytic Coatings for Active and Passive Diesel Particulate Filter Regeneration," Monatsh. Chem. Chem. Mon., 136(1), 91-105(2005). https://doi.org/10.1007/s00706-004-0261-z
  4. Dwyer, H., Ayala, H., Zhang, S., Collins, J., Huai, T., Herner, J. and Chau, W., "Emissions from a Diesel Car During Regeneration of an Active Diesel Particulate Filter," J. Aerosol Sci., 41(6), 541-552(2010). https://doi.org/10.1016/j.jaerosci.2010.04.001
  5. Krishna, K., Bueno-Lopez, A., Makkee, M. and Moulijn, J. A., "Potential Rare Earth Modified $CeO_2$ Catalysts for Soot Oxidation: I. Characterisation and Catalytic Activity with $O_2$," Appl. Catal. B: Environ., 75(3-4), 189-200(2007). https://doi.org/10.1016/j.apcatb.2007.04.010
  6. Castoldi, L., Matarrese, R., Lietti, L. and Forzatti, P., "Intrinsic Reactivity of Alkaline and Alkaline-earth Metal Oxide Catalysts for Oxidation of Soot," Appl. Catal. B: Environ., 90(1-2), 278-285 (2009). https://doi.org/10.1016/j.apcatb.2009.03.022
  7. Xue, L., Zhang, C., He, H. and Teraoka, Y., "Catalytic Decomposition of $N_2O$ over $CeO_2$ Promoted $Co_3O_4$ Spinel Catalyst," Appl. Catal. B: Environ., 75(3-4), 167-174(2007). https://doi.org/10.1016/j.apcatb.2007.04.013
  8. Shimokawa, H., Kusaba, H., Einaga, H. and Teraoka, Y., "Effect of Surface Area of La-K-Mn-O Perovskite Catalysts on Diesel Particulate Oxidation," Catal. Today, 139(1-2), 8-14(2008). https://doi.org/10.1016/j.cattod.2008.08.003
  9. Li, Z., Meng, M., Zha, Y., Dai, Y., Hu, T., Xie, Y. and Zhang, J., "Highly Efficient Multifunctional Dually-substituted Perovskite Catalysts $La_{1-x}K_xCo_{1-y}Cu_yO_{3-{\delta}}$ Used for Soot Combustion, NOx Storage and Simultaneous NOx-soot Removal," Appl. Catal. B: Environ., 121-122(13), 65-74(2012). https://doi.org/10.1016/j.apcatb.2012.03.022
  10. Pena, M. A. and Fierro, J. L. G., "Chemical Structures and Performance of Perovskite Oxides," Chem. Rev., 101(7), 1981-2018 (2001). https://doi.org/10.1021/cr980129f
  11. Stanmore, B. R., Brilhac, J. F. and Gilot, P., "The Oxidation of Soot: a Review of Experiments, Mechanisms and Models," Carbon, 39, 2247-2268(2001). https://doi.org/10.1016/S0008-6223(01)00109-9
  12. Villani, K., Kirschhock, C. E. A., Liang, D., Tendeloo, G. V. and Martens, J. A., "Catalytic Carbon Oxidation Over Ruthenium- Based Catalysts," Angew. Chemie Int. Ed., 45, 3106-3109(2006). https://doi.org/10.1002/anie.200503799
  13. Zhang, G., Zhao, Z., Liu, J., Jiang, G., Duan, A., Zheng, J., Chen, S. and Zhou, R., "Three Dimensionally Ordered Macroporous Ce1-xZrx$O_2$ Solid Solutions for Diesel Soot Combustion," Chem. Commun., 46(3), 457-459(2010). https://doi.org/10.1039/B915027G
  14. Aneggi, E., Wiater, D., Leitenburg, C. de., Llorca, J. and Trovarelli, A., "Shape-Dependent Activity of Ceria in Soot Combustion," ACS Catal., 4(1), 172-181(2014). https://doi.org/10.1021/cs400850r
  15. Miceli, P., Bensaid, S., Russo, N. and Fino, D., "$CeO_2$-based Catalysts with Engineered Morphologies for Soot Oxidation to Enhance Soot-catalyst Contact," Nanoscale Res. Lett., 9, 254 (2014). https://doi.org/10.1186/1556-276X-9-254
  16. Lee, C., Park, J.-I., Shul, Y.-G., Einaga, H. and Teraoka, Y., "Ag Supported on Electrospun Macro-structure $CeO_2$ Fibrous Mats for Diesel Soot Oxidation," Appl. Catal. B: Environ., 174-175, 185-192(2015). https://doi.org/10.1016/j.apcatb.2015.03.008
  17. Lee, C., Jeon, Y., Hata, S., Park, J.-I., Akiyoshi, R., Saito, H., Teraoka, Y., Shul, Y.-G. and Einaga, H., "Three-dimensional Arrangements of Perovskite-type Oxide Nano-fiber Webs for Effective Soot Oxidation," Appl. Catal. B: Environ., 191, 157-164 (2016). https://doi.org/10.1016/j.apcatb.2016.03.001
  18. Lee, C., Jeon, Y., Kim, T., Tou, A., Park, J.-I., Einaga, H. and Shul, Y.-G., "Ag-loaded Cerium-zirconium Solid Solution Oxide Nano-fibrous Webs and Their Catalytic Activity for Soot and CO Oxidation," Fuel, 212, 395-404(2018). https://doi.org/10.1016/j.fuel.2017.10.007
  19. Waller, D., Lane, J. A., Kilner, J. A. and Steele, B. C. H., "The Structure of and Reaction of A-site Deficient $La_{0.6}Sr_{0.4-x}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Perovskites," Mater. Lett., 27(4-5), 225-228(1996). https://doi.org/10.1016/0167-577X(95)00289-8
  20. Fadley, C. S. and Shirley, D. A., "Electronic Densities op States From X-ray Photoelectron Spectroscopy," J. Res. Natl. Bur. Stand. Sect. A: Phys. Chem. A, 74A(4), 543-558(1970). https://doi.org/10.6028/jres.074A.045
  21. Gunawan, C., Teoh, W. Y., Marquis, C. P., Lifia, J. and Amal, R., "Reversible Antimicrobial Photoswitching in Nanosilver," Small, 5(3), 341-344(2009). https://doi.org/10.1002/smll.200801202
  22. Qu, Z., Cheng, M., Dong, X. and Bao, X., "CO Selective Oxidation in $H_2$-rich Gas over Ag Nanoparticles-effect of Oxygen Treatment Temperature on the Activity of Silver Particles Mechanically Mixed with $SiO_2$," Catal. Today, 93-95, 247-255(2004). https://doi.org/10.1016/j.cattod.2004.06.133
  23. Machida, M., Murata, Y., Kishikawa, K., Zhang, D. and Ikeue, K., "On the Reasons for High Activity of $CeO_2$ Catalyst for Soot Oxidation," Chem. Mater., 20(13), 4489-4494(2008). https://doi.org/10.1021/cm800832w