DOI QR코드

DOI QR Code

Synthesis of Acetins from Glycerol using Lipase from Wheat Extract

  • Pradima, J (Department of Chemical Engineering, M S Ramaiah Institute of Technology) ;
  • Rajeswari, M Kulkarni (Department of Chemical Engineering, M S Ramaiah Institute of Technology) ;
  • Archna, Narula (Department of Chemical Engineering, M S Ramaiah Institute of Technology) ;
  • Sravanthi, V (Department of Chemical Engineering, M S Ramaiah Institute of Technology) ;
  • Rakshith, R (Department of Chemical Engineering, M S Ramaiah Institute of Technology) ;
  • Nawal, Rabia Nizar (Department of Chemical Engineering, M S Ramaiah Institute of Technology)
  • 투고 : 2019.01.04
  • 심사 : 2019.05.13
  • 발행 : 2019.08.01

초록

New technology-driven biocatalysts are revolutionizing the biochemical industries. With maximum utilization of renewable feedstock, biocatalysts have been the basis for a major breakthrough. Lipases are the most widely established catalysts used for hydrolysis, esterification and transesterification reactions. In this research, a biochemical process that combines extraction of lipase enzyme from germinated wheat seeds and its application to valorize glycerol to acetins by esterification is presented. Acetins are among highly rated, value-added products derived from glycerol. The favorable conditions for the enzymatic conversion of glycerol were observed as glycerol to acetic acid molar ratio (1:5), reaction temperature ($40^{\circ}C$) and the amount of enzyme (20% v/v). 65.93% of glycerol conversion was achieved for duration of 15 h with the use of tert-butanol solvent. This method proposes to explore the viability of a biological route to convert glycerol derived from biodiesel industry to acetins with further streamlining.

키워드

HHGHHL_2019_v57n4_501_f0001.png 이미지

Fig. 1. Scheme of synthesis of acetins, from glycerol and acetic acid [11,12].

HHGHHL_2019_v57n4_501_f0002.png 이미지

Fig. 2. Effect of enzyme concentration on glycerol conversion. Experimental conditions: 1:5 molar ratio glycerol/acetic acid at temperature 40 ℃, 15 h reaction time.

HHGHHL_2019_v57n4_501_f0003.png 이미지

Fig. 3. Effect of molar ratio of glycerol: acetic acid on glycerol conversion. Experimental conditions: 15 h reaction time, 20% v/v extracted lipase enzyme at temperature 40 ℃.

HHGHHL_2019_v57n4_501_f0004.png 이미지

Fig. 4. Effect of organic solvent on the conversion of glycerol. Experimental conditions: 1:5 molar ratio glycerol/acetic acid at temperature 40 ℃, 15 h reaction time, 20% v/v extracted lipase enzyme concentration.

HHGHHL_2019_v57n4_501_f0005.png 이미지

Fig. 5. Comparison of glycerol conversion with and without organic solvent at different time intervals. Experimental conditions: 1:5 molar ratio glycerol/acetic acid at temperature 40 ℃, 20% v/v extracted lipase enzyme concentration.

HHGHHL_2019_v57n4_501_f0006.png 이미지

Fig. 6. FT-IR spectra of extracted Lipase enzyme.

HHGHHL_2019_v57n4_501_f0007.png 이미지

Fig. 7. Enzyme kinetics for acetin production with and without solvent.

참고문헌

  1. Amini, Z., Ong, H. C., Harrison, M. D., Kusumo, F., Mazaheri, H. and Ilham, Z., "Biodiesel Production by Lipase-catalyzed Transesterification of Ocimum basilicum L. (sweet basil) Seed Oil," Energ. Convers. Manage., 132, 82-90(2017). https://doi.org/10.1016/j.enconman.2016.11.017
  2. Sharma, A., Ghosh, A., Pandey, R. A. and Mudliar, S. N., "Wet Air Oxidation Pretreatment of Mixed Lignocellulosic Biomass to Enhance Enzymatic Convertibility," Korean J. Chem. Eng., 53(2), 216-223(2015). https://doi.org/10.9713/kcer.2015.53.2.216
  3. Shafiei, A., Rastegari, H., Ghaziaskar, H. S. and Yalpani, M., "Glycerol Transesterification with Ethyl Acetate to Synthesize Acetins Using Ethyl Acetate as Reactant and Entrainer," Biofuel Research J., 4(1), 565-570(2017). https://doi.org/10.18331/BRJ2017.4.1.7
  4. Bedogni, G. A., Acevedo, M. D., Aguzin, F., Okulik, N. B. and Padro, C. L., "Synthesis of Bioadditives of Fuels from Biodieselderived Glycerol by Esterification with Acetic Acid on Solid Catalysts," Environ. Technol., 39(15), 1955-1966(2018). https://doi.org/10.1080/09593330.2017.1345986
  5. Testa, M. L., La Parola, V., Liotta, L. F. and Venezia, A. M., "Screening of Different Solid Acid Catalysts for Glycerol Acetylation," J. Mol. Catal. A-Chem., 367, 69-76(2013). https://doi.org/10.1016/j.molcata.2012.10.027
  6. Costa, I. C., Itabaiana Jr, I., Flores, M. C., Lourenço, A. C., Leite, S. G., de M.e Miranda, L. S., Leal, I. C. and de Souza, R.O., "Bio-catalyzed Acetins Production Under Continuous-flow Conditions: Valorization of Glycerol Derived from Biodiesel Industry," J. Flow Chem., 3(2), 41-45(2013). https://doi.org/10.1556/JFC-D-13-00001
  7. Liao, X., Zhu, Y., Wang, S. G., Chen, H. and Li, Y., "Theoretical Elucidation of Acetylating Glycerol with Acetic Acid and Acetic Anhydride," Appl. Catal. B-Environ., 94(1-2), 64-70(2010). https://doi.org/10.1016/j.apcatb.2009.10.021
  8. Ghaziaskar, H. S., Afsari, S., Rezayat, M. and Rastegari, H., "Quaternary Solubility of Acetic Acid, Diacetin and Triacetin in Supercritical Carbon Dioxide," J. Supercrit. Fluid., 119, 52-57 (2017). https://doi.org/10.1016/j.supflu.2016.09.005
  9. Pradima, J. and Kulkarni, M. R., "Review on Enzymatic Synthesis of Value Added Products of Glycerol, a by-product Derived From Biodiesel Production," Resource-Efficient Technologies., 3(4), 394-405(2017). https://doi.org/10.1016/j.reffit.2017.02.009
  10. Cahyono, R. B., Mufrodi, Z., Hidayat, A. and Budiman, A., "Acetylation of Glycerol for Triacetin Production using Zr-Natural Zeolite Catalyst," ARPN J. Appl. Sci., 11(8), (2016).
  11. Dalla Costa, B. O., Decolatti, H. P., Legnoverde, M. S. and Querini, C. A., "Influence of Acidic Properties of Different Solid Acid Catalysts for Glycerol Acetylation," Catal. Today., 289, 222-230 (2017). https://doi.org/10.1016/j.cattod.2016.09.015
  12. Zhou, L., Nguyen, T. H. and Adesina, A. A., "The Acetylation of Glycerol over Amberlyst-15: Kinetic and Product Distribution," Fuel Process Technol., 104, 310-318(2012). https://doi.org/10.1016/j.fuproc.2012.06.001
  13. Sun, J., Tong, X., Yu, L. and Wan, J., "An Efficient and Sustainable Production of Triacetin from the Acetylation of Glycerol Using Magnetic Solid Acid Catalysts Under Mild Conditions," Catal Today., 264, 115-122(2016). https://doi.org/10.1016/j.cattod.2015.07.011
  14. Veluturla, S., Archna, N., Subba Rao, D., Hezil, N., Indraja, I. S. and Spoorthi, S., "Catalytic Valorization of Raw Glycerol Derived from Biodiesel: a Review," Biofuels, 9(3), 305-314(2018). https://doi.org/10.1080/17597269.2016.1266234
  15. Testa, M. L., La Parola, V., Mesrar, F., Ouanji, F., Kacimi, M., Ziyad, M. and Liotta, L. F., "Use of Zirconium Phosphate-Sulphate as Acid Catalyst for Synthesis of Glycerol-Based Fuel Additives," Catalysts, 9(2), 148(2019). https://doi.org/10.3390/catal9020148
  16. Asmat, S., Husain, Q. and Azam, A., "Lipase Immobilization on Facile Synthesized Polyaniline-coated Silver-functionalized Graphene Oxide Nanocomposites as Novel Biocatalysts: Stability and Activity Insights," RSC Advances, 7(9), 5019-5029(2017). https://doi.org/10.1039/C6RA27926K
  17. Hirata, D. B., Albuquerque, T. L., Rueda, N., Virgen-Ortiz, J. J., Tacias-Pascacio, V. G. and Fernandez-Lafuente, R., "Evaluation of Different Immobilized Lipases in Transesterification Reactions Using Tributyrin: Advantages of the Heterofunctional Octyl Agarose Beads," J. Mol. Catal. B-Enzym., 133, 117-123(2016). https://doi.org/10.1016/j.molcatb.2016.08.008
  18. Barros, M., Fleuri, L. F. and Macedo, G. A., "Seed Lipases: Sources, Applications and Properties-a Review," Braz J. Chem. Eng., 27(1), 15-29(2010). https://doi.org/10.1590/S0104-66322010000100002
  19. Boukid, F., Folloni, S., Ranieri, R. and Vittadini, E., "A Compendium of Wheat Germ: Separation, Stabilization and Food Applications," Trends Food Sci Tech., 78, 120-133(2018). https://doi.org/10.1016/j.tifs.2018.06.001
  20. Dlugy, C. and Wolfson, A., "Lipase Catalyse Glycerolysis for Kinetic Resolution of Racemates," Bioproc Biosyst Eng., 30(5), 327-330 (2007). https://doi.org/10.1007/s00449-007-0128-x
  21. Oh, S. and Park, C., "Enzymatic Production of Glycerol Acetate from Glycerol," Enzyme Microb. Tech., 69, 19-23(2015). https://doi.org/10.1016/j.enzmictec.2014.11.004
  22. Wong, W. C., Basri, M., Razak, C. N. A. and Salleh, A. B., "Synthesis of Medium-chain gLycerides Using Lipase from Candida Rugosa," J. Am Oil Chem. Soc., 77(1), 85-88(2000). https://doi.org/10.1007/s11746-000-0013-9
  23. Pierozan, M. K., da Costa, R. J., Antunes, O. A., Oestreicher, E. G., Oliveira, J. V., Cansian, R. L., Treichel, H. and de Oliveira, D., "Optimization of Extraction of Lipase from Wheat Seeds (Triticum aestivum) by Response Surface Methodology," J. Agr. Food Chem., 57(20), 9716-9721(2009). https://doi.org/10.1021/jf901816x
  24. Avelar, M. H., Cassimiro, D. M., Santos, K. C., Domingues, R. C., de Castro, H. F. and Mendes, A. A., "Hydrolysis of Vegetable Oils Catalyzed by Lipase Extract Powder from Dormant Castor Bean Seeds," Ind. Crop. Prod., 44, 452-458(2013). https://doi.org/10.1016/j.indcrop.2012.10.011
  25. Soares, C. M., De Castro, H. F., De Moraes, F. F. and Zanin, G. M., "Characterization and Utilization of Candida Rugosa Lipase Immobilized on Controlled Pore Silica," Appl. Biochem. Biotechnol., 77-79, 745-757(1999). https://doi.org/10.1385/ABAB:79:1-3:745
  26. Verdasco-Martin, C. M., Garcia-Verdugo, E., Porcar, R., Fernandez- Lafuente, R. and Otero, C., "Selective Synthesis of Partial Glycerides of Conjugated Linoleic Acids via Modulation of the Catalytic Properties of Lipases by Immobilization on Different Supports," Food Chem., 245, 39-46(2018). https://doi.org/10.1016/j.foodchem.2017.10.072
  27. Chakraborty, R., Mukhopadhyay, P. and Kumar, B., "Optimal Biodiesel-additive Synthesis Under Infrared Excitation Using Pork Bone Supported-Sb Catalyst: Engine Performance and Emission Analyses," Energ. Convers. Manage., 126, 32-41(2016). https://doi.org/10.1016/j.enconman.2016.07.069
  28. Tudorache, M., Protesescu, L., Coman, S. and Parvulescu, V. I., "Efficient Bio-conversion of Glycerol to Glycerol Carbonate Catalyzed by Lipase Extracted from Aspergillus niger," Green Chem., 14(2), 478-482(2012). https://doi.org/10.1039/c2gc16294f
  29. Jung, H., Lee, Y., Kim, D., Han, S. O., Kim, S. W., Lee, J., Kim, Y. H. and Park, C., "Enzymatic Production of Glycerol Carbonate from by-product After Biodiesel Manufacturing Process," Enzyme Microb. Tech., 51(3), 143-147(2012). https://doi.org/10.1016/j.enzmictec.2012.05.004
  30. Devendran, S. and Yadav, G. D., "Lipase-catalyzed Kinetic Resolution of (${\pm}$)-1-(2-furyl) Ethanol in Nonaqueous Media," Chirality, 26(6), 286-292(2014). https://doi.org/10.1002/chir.22317
  31. Taher, H. and Al-Zuhair, S., "The Use of Alternative Solvents in Enzymatic Biodiesel Production: a Review," Biofuel. Bioprod. Bior., 11(1), 168-194(2017). https://doi.org/10.1002/bbb.1727
  32. Teng, W. K., Ngoh, G. C., Yusoff, R. and Aroua, M. K., "A Review on the Performance of Glycerol Carbonate Production via Catalytic Transesterification: Effects of Influencing Parameters," Energ. Convers. Manage., 88, 484-497(2014). https://doi.org/10.1016/j.enconman.2014.08.036
  33. Paula, A. V., Urioste, D., Santos, J. C. and de Castro, H. F., "Porcine Pancreatic Lipase Immobilized on Polysiloxane-polyvinyl Alcohol Hybrid Matrix: Catalytic Properties and Feasibility to Mediate Synthesis of Surfactants and Biodiesel," J. Chem. Technol. Biot., International Research in Process, Environmental & Clean Technology, 82(3), 281-288(2007).
  34. Jiang, H., Zhang, Y. and Wang, X., "Effect of Lipases on the Surface Properties of Wheat Straw," Ind. Crop. Prod., 30(2), 304-310(2009). https://doi.org/10.1016/j.indcrop.2009.05.009