DOI QR코드

DOI QR Code

mTOR signalling pathway - A root cause for idiopathic autism?

  • Ganesan, Harsha (Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University) ;
  • Balasubramanian, Venkatesh (Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University) ;
  • Iyer, Mahalaxmi (Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women) ;
  • Venugopal, Anila (Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University) ;
  • Subramaniam, Mohana Devi (Department of Genetics and Molecular Biology, Vision Research Foundation) ;
  • Cho, Ssang-Goo (Department of Stem Cell and Regenerative Biotechnology, Konkuk University) ;
  • Vellingiri, Balachandar (Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University)
  • Received : 2019.05.10
  • Published : 2019.07.31

Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental monogenic disorder with a strong genetic influence. Idiopathic autism could be defined as a type of autism that does not have a specific causative agent. Among signalling cascades, mTOR signalling pathway plays a pivotal role not only in cell cycle, but also in protein synthesis and regulation of brain homeostasis in ASD patients. The present review highlights, underlying mechanism of mTOR and its role in altered signalling cascades as a triggering factor in the onset of idiopathic autism. Further, this review discusses how distorted mTOR signalling pathway stimulates truncated translation in neuronal cells and leads to downregulation of protein synthesis at dendritic spines of the brain. This review concludes by suggesting downstream regulators such as p70S6K, eIF4B, eIF4E of mTOR signalling pathway as promising therapeutic targets for idiopathic autistic individuals.

Keywords

References

  1. Al-Zahrani A (2013) Prevalence and clinical characteristics of autism spectrum disorders in school-age children in Taif-KSA. Int J Med Sci Public Health 2, 578-582 https://doi.org/10.5455/ijmsph.2013.160420133
  2. Gilbert J and Man HY (2017) Fundamental elements in autism: from neurogenesis and neurite growth to synaptic plasticity. Front Cell Neurosci 11, 359 https://doi.org/10.3389/fncel.2017.00359
  3. Jiang YH, Wang Y, Xiu X, Choy KW, Pursley AN and Cheung SW (2014) Genetic diagnosis of autism spectrum disorders: the opportunity and challenge in the genomics era. Crit Rev Clin Lab Sci 51, 249-262 https://doi.org/10.3109/10408363.2014.910747
  4. Mattila ML, Kielinen M, Linna SL et al (2011) Autism spectrum disorders according to DSM-IV-TR and comparison with DSM-5 draft criteria: an epidemiological study. J Am Acad Child Adolesc Psychiatry 50, 583-592 https://doi.org/10.1016/j.jaac.2011.04.001
  5. Harker CM, Stone WL (2014) Comparison of the Diagnostic Criteria for Autism Spectrum Disorder Across DSM-5, DSM-IV-TR, 2 and the Individuals with Disabilities Act (IDEA) 3 Definition of Autism, 1-6
  6. King BH, Navot N, Bernier R, Webb SJ (2014) Update on diagnostic classification in autism. Curr Opin Psychiatry 27, 105 https://doi.org/10.1097/YCO.0000000000000040
  7. Howes OD, Rogdaki M, Findon JL et al (2018) Autism spectrum disorder: Consensus guidelines on assessment, treatment and research from the British Association for Psychopharmacology. J Psychopharmacol 32, 3-29
  8. Venugopal A, Chandran M, Eruppakotte N, Kizhakkillach S, Breezevilla SC and Vellingiri B (2018) Monogenic diseases in India. Mutat Res 776, 23-31 https://doi.org/10.1016/j.mrrev.2018.03.003
  9. Nicolini C, Ahn Y, Michalski B, Rho JM and Fahnestock M (2015) Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid. Acta Neuropathol Commun 3, 3 https://doi.org/10.1186/s40478-015-0184-4
  10. Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM and Reichenberg A (2014) The familial risk of autism. JAMA 311, 1770-1777 https://doi.org/10.1001/jama.2014.4144
  11. Berko ER, Suzuki M, Beren F et al (2014) Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder. PLoS Genet 10, e1004402 https://doi.org/10.1371/journal.pgen.1004402
  12. St-Hilaire S, Ezike VO, Stryhn H and Thomas MA (2012) An ecological study on childhood autism. Int J of Health Geogr 11, 44 https://doi.org/10.1186/1476-072X-11-44
  13. Tordjman S, Davlantis KS, Georgieff N et al (2015) Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives. Front Pediatr 3, 1 https://doi.org/10.3389/fped.2015.00001
  14. Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I and McConnell R (2013) Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry 70, 71-77 https://doi.org/10.1001/jamapsychiatry.2013.266
  15. Subramanian M, Timmerman CK, Schwartz JL, Pham DL and Meffert MK (2015) Characterizing autism spectrum disorders by key biochemical pathways. Front Neurosci 9, 313 https://doi.org/10.3389/fnins.2015.00313
  16. Hutsler JJ, Zhang H (2010) Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309, 83-94 https://doi.org/10.1016/j.brainres.2009.09.120
  17. Horgusluoglu E, Nudelman K, Nho K, and Saykin AJ (2017) Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. Am J Med Genet B Neuropsychiatr Genet 174, 93-112 https://doi.org/10.1002/ajmg.b.32429
  18. Betizeau M and Dehay C (2016) From stem cells to comparative corticogenesis: a bridge too far? Stem cell Investing 3, 39 https://doi.org/10.21037/sci.2016.08.02
  19. Osborne LR (2010) Caveat mTOR: aberrant signaling disrupts corticogenesis. J Clin Invest 120, 1392-1395 https://doi.org/10.1172/JCI43030
  20. Gatto CL and Broadie K (2010) Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models. Front Synaptic Neurosci 2, 4 https://doi.org/10.3389/fnsyn.2010.00004
  21. Zatkova M, Bakos J, Hodosy J and Ostatnikova D (2016) Synapse alterations in autism: Review of animal model findings. Biomed Pap Med Fac Uni Palacky Olomouc Czech Repub 160, 201-210 https://doi.org/10.5507/bp.2015.066
  22. Ishii K, Kubo KI and Nakajima K (2016) Reelin and neuropsychiatric disorders. Frontiers Cell Neurosci 10, 229
  23. Oblak AL, Gibbs TT and Blatt GJ (2010) Decreased GABAB receptors in the cingulate cortex and fusiform gyrus in autism. J Neurochem 114, 1414-1423 https://doi.org/10.1111/j.1471-4159.2010.06858.x
  24. Notwell JH, Heavner WE, Darbandi SF et al (2016) TBR1 regulates autism risk genes in the developing neocortex. Genome Res 26, 1013-1022 https://doi.org/10.1101/gr.203612.115
  25. Hanashima C and Toma K (2015) Switching modes in corticogenesis: mechanisms of neuronal subtype transitions and integration in the cerebral cortex. Front Neurosci 9, 274 https://doi.org/10.3389/fnins.2015.00274
  26. Ichtchenko K, Hata Y, Nguyen T et al (1995) Neuroligin 1: a splice site-specific ligand for ${\beta}$-neurexins. Cell 81, 435-443 https://doi.org/10.1016/0092-8674(95)90396-8
  27. Chen J, Yu S, Fu Y and Li X (2014) Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci 8, 276
  28. Williams E and Casanova M (2011) Above genetics: lessons from cerebral development in autism. Transl Neurosci 2, 106-120
  29. Wisniewska MB (2013) Physiological role of ${\beta}$-catenin/TCF signaling in neurons of the adult brain. Neurochem Res 38, 1144-1155 https://doi.org/10.1007/s11064-013-0980-9
  30. Feliciano DM, Su T, Lopez J, Platel JC and Bordey A (2011) Single-cell Tsc1 knockout during corticogenesis generates tuber-like lesions and reduces seizure threshold in mice. J Clin Invest 121, 1596-1607 https://doi.org/10.1172/JCI44909
  31. Won H, Mah W and Kim E (2013) Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Molecu Neurosci 6, 19 https://doi.org/10.3389/fnmol.2013.00019
  32. Lahiri DK, Sokol DK, Erickson C, Ray B, Ho CY and Maloney B (2013) Autism as early neurodevelopmental disorder: evidence for an $sAPP{\alpha}$-mediated anabolic pathway. Front Cell Neuro 7, 94 https://doi.org/10.3389/fncel.2013.00094
  33. Lin TV, Hsieh L, Kimura T, Malone TJ and Bordey A (2016) Normalizing translation through 4E-BP prevents mTOR-driven cortical mislamination and ameliorates aberrant neuron integration. Proc Natl Acad Sci U S A 113, 11330-11335 https://doi.org/10.1073/pnas.1605740113
  34. Oron O and Elliott E (2017) Delineating the Common Biological Pathways Perturbed by ASD's Genetic Etiology: Lessons from Network-Based Studies. Int J Molecu Sci 18, 828 https://doi.org/10.3390/ijms18040828
  35. Noelanders R and Vleminckx K (2017) How Wnt signaling builds the brain: bridging development and disease. Neuroscientist 23, 314-329 https://doi.org/10.1177/1073858416667270
  36. Jung NH, Janzarik WG, Delvendahl I et al (2013) Impaired induction of long-term potentiation-like plasticity in patients with high-functioning autism and Asperger syndrome. Dev Med Child Neurol 55, 83-89 https://doi.org/10.1111/dmcn.12012
  37. Wen Y, Alshikho MJ and Herbert MR (2016) Pathway network analyses for autism reveal multisystem involvement, major overlaps with other diseases and convergence upon MAPK and calcium signaling. PLoS One 11, e0153329 https://doi.org/10.1371/journal.pone.0153329
  38. O'Loghlen A, Perez-Morgado MI, Salinas M and Martin ME (2006) N-acetyl-cysteine abolishes hydrogen peroxideinduced modification of eukaryotic initiation factor 4F activity via distinct signalling pathways. Cell Signal 18, 21-31 https://doi.org/10.1016/j.cellsig.2005.03.013
  39. Laplante M and Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122, 3589-3594 https://doi.org/10.1242/jcs.051011
  40. Murugan AK, Alzahrani A and Xing M (2013) Mutations in critical domains confer the human mTOR gene strong tumorigenicity. J Bio Chem 288, 6511-6521 https://doi.org/10.1074/jbc.M112.399485
  41. Conciatori F, Ciuffreda L, Bazzichetto C et al (2018) mTOR cross-talk in cancer and potential for combination therapy. Cancers 10, 23 https://doi.org/10.3390/cancers10010023
  42. Audet-Walsh E, Dufour CR, Yee T et al (2017) Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate cancer. Genes Dev 31, 1228-1242 https://doi.org/10.1101/gad.299958.117
  43. Xu J, Pham CG, Albanese SK et al (2016) Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin. J Clin Invest 126, 3526-3540 https://doi.org/10.1172/JCI86120
  44. Davis NM, Sokolosky M, Stadelman K et al (2014) Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget 5, 4603 https://doi.org/10.18632/oncotarget.2209
  45. Samidurai A, Kukreja RC and Das A (2018) Emerging Role of mTOR Signaling-Related miRNAs in Cardiovascular Diseases. Oxid Med Cell Longev 2018, 23
  46. Viana SD, Reis F and Alves R (2018) Therapeutic Use of mTOR Inhibitors in Renal Diseases: Advances, Drawbacks, and Challenges. Oxid Med Cell Longev 2018, 3693625 https://doi.org/10.1155/2018/3693625
  47. Lawrence J and Nho R (2018) The role of the mammalian target of rapamycin (mTOR) in pulmonary fibrosis. Inter J Mol Sci 19, 778 https://doi.org/10.3390/ijms19030778
  48. Chau GC, Im DU, Kang TM et al (2017) mTOR controls ChREBP transcriptional activity and pancreatic ${\beta}$ cell survival under diabetic stress. J Cell Biol 216, 2091-2105 https://doi.org/10.1083/jcb.201701085
  49. Striano P, Zara F (2012) Genetics: mutations in mTOR pathway linked to megalencephaly syndromes. Nat Rev Neurol 8 (10), 542
  50. Mirzaa GM, Campbell CD, Solovieff N et al (2016) Association of MTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism. JAMA Neurol 73, 836-845 https://doi.org/10.1001/jamaneurol.2016.0363
  51. Lee JH, Huynh M, Silhavy J et al (2012) De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44, 941 https://doi.org/10.1038/ng.2329
  52. Panner A, James CD, Berger MS, Pieper RO (2005) mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells. Mol Cell Biol 25, 8809-8823 https://doi.org/10.1128/MCB.25.20.8809-8823.2005
  53. Lim JS, Kim W, Kang HC et al (2015) Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med 21 (4), 395 https://doi.org/10.1038/nm.3824
  54. Ryskalin L, Lazzeri G, Flaibani M et al (2017) mTOR-dependent cell proliferation in the brain. Biomed Res Int 2017, 14
  55. Costa-Mattioli M and Monteggia LM (2013) mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat Neurosci 16, 1537-1543 https://doi.org/10.1038/nn.3546
  56. Lee HK, Kwon B, Lemere CA et al (2017) mTORC2 (Rictor) in Alzheimer's disease and reversal of amyloid-${\beta}$ expression-induced insulin resistance and toxicity in rat primary cortical neurons. J Alz Dis 56, 1015-1036 https://doi.org/10.3233/JAD-161029
  57. Dan HC, Ebbs A, Pasparakis M, Van Dyke T, Basseres DS and Baldwin AS (2014) Akt-dependent activation of mTORC1 Involves phosphorylation of mTOR by IKKalpha. J Bio Chem 289, 25227-25240 https://doi.org/10.1074/jbc.M114.554881
  58. Takei N and Nawa H (2014) mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neuro 7, 28 https://doi.org/10.3389/fnmol.2014.00028
  59. Winden KD, Ebrahimi-Fakhari Dand Sahin M (2018) Abnormal mTOR activation in autism. Annu Rev of Neuro 41, 1-23 https://doi.org/10.1146/annurev-neuro-080317-061747
  60. Muranen T, Selfors LM, Worster DT et al (2012) Inhibition of PI3K/mTOR leads to adaptive resistance in matrixattached cancer cells. Cancer cell 21, 227-239 https://doi.org/10.1016/j.ccr.2011.12.024
  61. Sawicka K and Zukin RS (2012) Dysregulation of mTOR signaling in neuropsychiatric disorders: therapeutic implications. Neuropsychopharma 37, 305 https://doi.org/10.1038/npp.2011.210
  62. Sharma A, Hoeffer CA, Takayasu Y et al (2010) Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci 30, 694-702 https://doi.org/10.1523/JNEUROSCI.3696-09.2010
  63. Sun J, Liu Y, Moreno S, Baudry M, Bi X (2015) Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of Angelman syndrome mice impairs motor function. J Neurosci 35, 4706-4718 https://doi.org/10.1523/JNEUROSCI.4276-14.2015
  64. Piven J, Elison JT and Zylka MJ (2017) Toward a conceptual framework for early brain and behavior development in autism. Mol psych 22, 1385 https://doi.org/10.1038/mp.2017.131
  65. Lipton JO and Sahin M (2014) The neurology of mTOR. Neuron 84, 275-291 https://doi.org/10.1016/j.neuron.2014.09.034
  66. Nicolini C and Fahnestock M (2018) The valproic acid-induced rodent model of autism. Exper Neuro 299, 217-227 https://doi.org/10.1016/j.expneurol.2017.04.017
  67. Liu X, Campanac E, Cheung HH et al (2017) Idiopathic autism: cellular and molecular phenotypes in pluripotent stem cell-derived neurons. Mol Neurobiol 54, 4507-4523 https://doi.org/10.1007/s12035-016-9961-8
  68. Meyza KZ and Blanchard DC (2017) The BTBR mouse model of idiopathic autism-Current view on mechanisms. Neurosci Biobehav Rev 76, 99-110 https://doi.org/10.1016/j.neubiorev.2016.12.037
  69. Onore C, Yang H, Van de Water J and Ashwood P (2017) Dynamic Akt/mTOR signaling in children with autism spectrum disorder. Front Pediat 5, 43
  70. De Rosa BA, El Hokayem J, Artimovich E et al (2018) Convergent Pathways in Idiopathic Autism Revealed by Time Course Transcriptomic Analysis of Patient-Derived Neurons. Scienti Rep 8, 8423 https://doi.org/10.1038/s41598-018-26495-1
  71. Showkat M, Beigh MA and Andrabi KI (2014) mTOR signaling in protein translation regulation: implications in cancer genesis and therapeutic interventions. Mol Biol Int 2014, 14
  72. Kelleher III RJ and Bear MF (2008) The autistic neuron: troubled translation? Cell 135, 401-406 https://doi.org/10.1016/j.cell.2008.10.017
  73. Dowling RJ, Topisirovic I, Alain T et al (2010) mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328, 1172-1176 https://doi.org/10.1126/science.1187532
  74. Kanne SM, Gerber AJ, Quirmbach LM, Sparrow SS, Cicchetti DV and Saulnier CA (2011) The role of adaptive behavior in autism spectrum disorders: Implications for functional outcome. J Autism Dev Disord 41, 1007-1018 https://doi.org/10.1007/s10803-010-1126-4
  75. Josse L, Xie J, Proud CG and Smales CM (2016) mTORC1 signalling and eIF4E/4E-BP1 translation initiation factor stoichiometry influence recombinant protein productivity from GS-CHOK1 cells. Biochem J 473, 4651-4664 https://doi.org/10.1042/BCJ20160845
  76. Jernigan CS, Goswami DB, Austin MC et al (2011) The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 35, 1774-1779 https://doi.org/10.1016/j.pnpbp.2011.05.010
  77. Xiao Z, Casey KA, Jameson SC, Curtsinger JM and Mescher MF (2009) Programming for CD8 T cell memory development requires IL-12 or type I IFN. J Immunol 182, 2786-2794 https://doi.org/10.4049/jimmunol.0803484
  78. Shott RH, Appanah C, Grenier C, Tremblay G, Roucou X and Schang LM (2014) Development of kinomic analyses to identify dysregulated signaling pathways in cells expressing cytoplasmic PrP. Virol J 11, 175 https://doi.org/10.1186/1743-422X-11-175
  79. Cao R, Robinson B, Xu H (2013) Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signaling. Neuron 79, 712-724 https://doi.org/10.1016/j.neuron.2013.06.026
  80. Gkogkas CG, Khoutorsky A, Ran I et al (2013) Autismrelated deficits via dysregulated eIF4E-dependent translational control. Nature 493, 371 https://doi.org/10.1038/nature11628
  81. Dennis MD, Kimball SR and Jefferson LS (2013) Mechanistic target of rapamycin complex 1 (mTORC1)-mediated phosphorylation is governed by competition between substrates for interaction with raptor. J Bio Chem 288, 10-19 https://doi.org/10.1074/jbc.M112.402461
  82. Zhao XF and Gartenhaus RB (2009) Phospho-p70S6K and cdc2/cdk1 as therapeutic targets for diffuse large B-cell lymphoma. Expert Opin Ther Targets 13, 1085-1093 https://doi.org/10.1517/14728220903103833
  83. Bahrami BF, Ataie-Kachoie P, Pourgholami MH, and Morris DL (2014) p70 Ribosomal protein S6 kinase (Rps6kb1): an update. J Clin Pathol 12, 1019-1025
  84. Bahrami F, Pourgholami MH, Mekkawy AH, Rufener L and Morris DL (2014) Monepantel induces autophagy in human ovarian cancer cells through disruption of the mTOR/p70S6K signalling pathway. Am J Can Res 4, 558-571
  85. Biever A, Valjent E and Puighermanal E (2015) Ribosomal protein S6 phosphorylation in the nervous system: from regulation to function. Front Mol Neuro 8, 75
  86. Kwon CH, Luikart BW, Powell CM et al (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50, 377-388 https://doi.org/10.1016/j.neuron.2006.03.023
  87. Ogawa S, Kwon CH, Zhou J, Koovakkattu D, Parada LF and Sinton CM (2007) A seizure-prone phenotype is associated with altered free-running rhythm in Pten mutant mice. Brain Res 1168, 112-123 https://doi.org/10.1016/j.brainres.2007.06.074
  88. Lafourcade CA, Lin TV, Feliciano DM, Zhang L, Hsieh LS and Bordey A (2013) Rheb activation in subventricular zone progenitors leads to heterotopia, ectopic neuronal differentiation, and rapamycin-sensitive olfactory micronodules and dendrite hypertrophy of newborn neurons. J Neurosci 33, 2419-2431 https://doi.org/10.1523/JNEUROSCI.1840-12.2013
  89. Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ and Sabatini BL (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci 8, 1727 https://doi.org/10.1038/nn1566
  90. Thomanetz V, Angliker N, Cloetta D et al (2013) Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J Cell Biol 201, 293-308 https://doi.org/10.1083/jcb.201205030
  91. Weston MC, Chen H and Swann JW (2014) Loss of mTOR repressors Tsc1 or Pten has divergent effects on excitatory and inhibitory synaptic transmission in single hippocampal neuron cultures. Front Mol Neurosci 7, 1 https://doi.org/10.3389/fnmol.2014.00001
  92. Choi YJ, Di Nardo A, Kramvis I et al (2008) Tuberous sclerosis complex proteins control axon formation. Genes Dev 22, 2485-2495 https://doi.org/10.1101/gad.1685008