DOI QR코드

DOI QR Code

Probabilistic assessment on buckling behavior of sandwich panel: - A radial basis function approach

  • Kumar, R.R. (Mechanical Engineering Department, National Institute of Technology Silchar) ;
  • Pandey, K.M. (Mechanical Engineering Department, National Institute of Technology Silchar) ;
  • Dey, S. (Mechanical Engineering Department, National Institute of Technology Silchar)
  • 투고 : 2018.10.27
  • 심사 : 2019.03.31
  • 발행 : 2019.07.25

초록

Probabilistic buckling behavior of sandwich panel considering random system parameters using a radial basis function (RBF) approach is presented in this paper. The random system properties result in an uncertain response of the sandwich structure. The buckling load of laminated sandwich panel is obtained by employing higher-order-zigzag theory (HOZT) coupled with RBF and probabilistic finite element (FE) model. The in-plane displacement variation of core as well as facesheet is considered to be cubic while transverse displacement is considered to be quadratic within the core and constant in the facesheets. Individual and combined stochasticity in all elemental input parameters (like facesheets thickness, ply-orientation angle, core thickness and properties of material) are considered to know the effect of different degree of stochasticity, ply- orientation angle, boundary conditions, core thickness, number of laminates, and material properties on global response of the structure. In order to achieve the computational efficiency, RBF model is employed as a surrogate to the original finite element model. The stiffness matrix of global response is stored in a single array using skyline technique and simultaneous iteration technique is used to solve the stochastic buckling equations.

키워드

과제정보

연구 과제 주관 기관 : MHRD

참고문헌

  1. Al-Shamary, A.K., Karakuzu. R. and Ozdemir, O. (2016), "Lowvelocity impact response of sandwich composites with different foam core configurations", J. Sandwich Struct. Mater., 18(6), 754-768. https://doi.org/10.1177/1099636216653267.
  2. Alamatian, J. and Hosseini-Nejad, G.M. (2017), "An efficient explicit framework for determining the lowest structural buckling load using Dynamic Relaxation method", Mech. Based Design Struct. Machines, 45(4), 451-462. https://doi.org/10.1080/15397734.2016.1238765.
  3. Bart-Smith, H., Hutchinson, J.W. and Evans, A.G. (2001), "Measurement and analysis of the structural performance of cellular metal sandwich construction", J. Mech. Sci., 43(8), 1945-1963. https://doi.org/10.1016/S0020-7403(00)00070-9.
  4. Caliskan, U. and Apalak, M.K. (2017), "Low velocity bending impact behavior of foam core sandwich beams: Experimental", Compos. Part B Eng., 112, 158-175. https://doi.org/10.1016/j.compositesb.2016.12.038.
  5. Chalak, H.D., Chakrabarti, A. and Sheikh A.H. (2015), "Iqbal MA. Stability analysis of laminated soft core sandwich plates using higher order zig-zag plate theory", Mech. Adv. Mater. Struct., 22(11), 897-907. https://doi.org/10.1080/15376494.2013.874061.
  6. Deshpande, V.S. and Fleck, N.A. (2001), "Collapse of truss core sandwich beams in 3-point bending", J. Solid. Struct., 38(36-37),6275-305. https://doi.org/10.1016/S0020-7683(01)00103-2.
  7. Deshpande, V.S. and Fleck, N.A. (2003) "Energy absorption of an egg-box material", J. Mech. Phys. Solid., 51(1), 187-208. https://doi.org/10.1016/S0022-5096(02)00052-2.
  8. Dey, S., Mukhopadhyay, T. and Adhikari, S. (2017), "Metamodel based high-fidelity stochastic analysis of composite laminates: A concise review with critical comparative assessment", Compos. Struct., 171, 227-250. https://doi.org/10.1016/j.compstruct.2017.01.061.
  9. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. http://dx.doi.org/10.12989/sem.2017.63.5.585.
  10. Elmossouess, B., Kebdani, S., Bouiadjra, M.B. and Tounsi, A. (2017), "A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates", Struct. Eng. Mech., 62(4), 401-415. http://dx.doi.org/10.12989/sem.2017.62.4.401.
  11. Fan, H., Zhou, Q., Yang, W. and Jin gjing, Z. (2010), "An experiment study on the failure mechanisms of woven textile sandwich panels under quasi-static loading", Compos. Part B Eng., 41(8), 686-92. https://doi.org/10.1016/j.compositesb.2010.07.004.
  12. Golchi, M., Talebitooti, M. and Talebitooti, R. (2018), "Thermal buckling and free vibration of FG truncated conical shells with stringer and ring stiffeners using differential quadrature method", Mech. Based Design Struct. Machines, 1-28. https://doi.org/10.1080/15397734.2018.1545588.
  13. Gupta, A. and Talha, M. (2018), "Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates", Mech. Based Design Struct. Machines, 1-9. https://doi.org/10.1080/15397734.2018.1449656.
  14. Hohe, J. (2015), "Load and frequency interaction effects in dynamic buckling of soft core sandwich structures", Compos. Struct., 132, 1006-1018. https://doi.org/10.1016/j.compstruct.2015.07.011.
  15. Ikeda, K., Ohsaki, M., Sudo, K. and Kitada, T. (2009), "Probabilistic analysis of buckling loads of structures via extended Koiter law", Struct. Eng. Mech., 32(1), 167-178. https://doi.org/10.12989/sem.2009.32.1.167
  16. Kacar, I. and Yildirim, V. (2016), "Free vibration/buckling analyses of noncylindrical initially compressed helical composite springs", Mech. Based Design Struct. Machines, 44(4), 340-353. https://doi.org/10.1080/15397734.2015.1066687.
  17. Kahya, V. (2016), "Buckling analysis of laminated composite and sandwich beams by the finite element method", Compos. Part B Eng., 91, 126-134. https://doi.org/10.1016/j.compositesb.2016.01.031.
  18. Kant, T. and Manjunath, B.S. (1998), "An unsymmetric FRC laminated finite element model with 12 degree of freedom per node", Eng Comput., 5(4), 300-308. https://doi.org/10.1108/eb023749
  19. Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2018a), "Spatial vulnerability analysis for the first ply failure strength of composite laminates including effect of delamination", Compos. Struct., 184, 554-567. https://doi.org/10.1016/j.compstruct.2017.09.078.
  20. Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2018b), "Stochastic dynamic analysis of twisted functionally graded plates", Compos. Part B Eng., 147, 259-278. https://doi.org/10.1016/j.compositesb.2018.03.043
  21. Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2018c), "Stochastic Investigation of Natural Frequency for Functionally Graded Plates", InIOP Conference Series Mater. Sci. Eng., 326(1), https://doi.org/10.1088/1757-899X/326/1/012003.
  22. Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2019), "Stochastic low-velocity impact on functionally graded plates: Probabilistic and non-probabilistic uncertainty quantification", Compos. Part B Eng., 159, 461-480. https://doi.org/10.1016/j.compositesb.2018.09.066.
  23. Khalili, S.M, Kheirikhah, M.M. and Malekzadeh Fard, K. (2015), "Buckling analysis of composite sandwich plates with flexible core using improved high-order theory", Mech. Adv. Mater. Struct., 22(4), 233-247. https://doi.org/10.1080/15376494.2012.736051.
  24. Kheirikhah, M.M., Khalili, S.M. and Fard, K.M. (2012), "Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory", European J. Mech. A/Solids, 31(1), 54-66. https://doi.org/10.1016/j.euromechsol.2011.07.003.
  25. Kolahchi, R.A. (2017), "Comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  26. Kollar, L.P. and Springer, G.S. (2003), Mechanics of Compos. Struct., Cambridge, United Kingdom.
  27. Kumar, R.R., Mukhopadhyay, T., Pandey, K.M. and Dey, S. (2019), "Stochastic buckling analysis of sandwich plates: The importance of higher order modes", J. Mech. Sci., 152, 630-643. https://doi.org/10.1016/j.ijmecsci.2018.12.016.
  28. Lal, A., Kulkarni, N.M. and Singh, B.N. (2015), "Stochastic thermal post buckling response of elastically supported laminated piezoelectric composite plate using micromechanical approach", Curv. Layer. Struct., 2(1). https://doi.org/10.1515/cls-2015-0019.
  29. Lal, A., Saidane, N. and Singh, B.N. (2012), "Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel", Smart Struct. Syst., 9(6), 505-534. http://dx.doi.org/10.12989/sss.2012.9.6.505.
  30. Li, J., Tian, X., Han, Z. and Narita, Y. (2016), "Stochastic thermal buckling analysis of laminated plates using perturbation technique", Compos. Struct., 139, 1-2. https://doi.org/10.1016/j.compstruct.2015.11.076.
  31. Magnucka-Blandzi, E., Wisniewska-Mleczko, K., Smyczynski, M. J. and Kedzia, P. (2018), "Buckling of a sandwich symmetrical circular plate with varying mechanical properties of the core", Appl. Math. Mech., 39(7), 981-992. https://doi.org/10.1007/s10483-018-2347-8.
  32. McCormick, C. (2013), Radial Basis Function Network (RBFN) Tutorial. http://mccormickml.com/2013/08/15/radial-basisfunction-network-rbfn-tutorial.
  33. Mohammadimehr, M., Nejad, E.S. and Mehrabi, M. (2018), "Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores", Struct. Eng. Mech., 65(4), 491-504. http://dx.doi.org/10.12989/sem.2018.65.4.491.
  34. Moita, J.S., Araújo, A.L., Correia, V.F., Soares, C.M. and Soares, C.M. (2015), "Buckling and geometrically nonlinear analysis of sandwich structures", J. Mech. Sci., 92, 154-161. https://doi.org/10.1016/j.ijmecsci.2014.12.008.
  35. Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2017), "Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory", J. Sandwich Struct. Mater., 19(6), 736-769. https://doi.org/10.1177/1099636216643425.
  36. Mukhopadhyay, T., Naskar, S., Karsh, P.K., Dey, S. and You, Z. (2018), "Effect of delamination on the stochastic natural frequencies of composite laminates", Compos. Part B Eng., 154, 242-256. https://doi.org/10.1016/j.compositesb.2018.07.029.
  37. Muradova, A.D., Kurutz, M. and Stavroulakis, G.E. (2009), "Buckling simulation of a plate embedded in a unilaterally supported environment", Mech. Based Design Struct. Machines, 37(3), 349-370. https://doi.org/10.1080/15397730902938316.
  38. Nguyen, K., Thai, H.T. and Vo, T. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 91-120. http://dx.doi.org/10.12989/scs.2015.18.1.091.
  39. Panda, S.K. and Singh, B.N. (2013), "Thermal Postbuckling Behavior of Laminated Composite Spherical Shell Panel Using NFEM", Mech. Based Design Struct. Machines, 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330.
  40. Poortabib, A. and Maghsoudi, M. (2014), "The analytical solution for buckling of curved sandwich beams with a transversely flexible core subjected to uniform load", Struct. Eng. Mech., 52(2), 323-349. http://dx.doi.org/10.12989/sem.2014.52.2.323.
  41. Reddy, J.N. (1984), "A simple higher-order shear deformation theory for laminated composite plates", J. Appl Mech., 51(4), 745-752. https://doi.org/10.1016/j.compstruct.2013.06.013.
  42. Rizov, V., Shipsha, A. and Zenkert, D. (2005), "Indentation study of foam core sandwich composite panels", Compos. Struct., 69(1), 95-102. https://doi.org/10.1016/j.compstruct.2004.05.013.
  43. Seidi, J., Khalili, S.M. and Malekzadeh K. (2015), "Temperaturedependent buckling analysis of sandwich truncated conical shells with FG facesheets", Compos. Struct., 131, 682-691. https://doi.org/10.1016/j.compstruct.2015.04.068.
  44. Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017), "A new quasi-3D HSDT for buckling and vibration of FG plate", Struct. Eng. Mech., 64(6), 737-749. http://dx.doi.org/10.12989/.2017.64.6.737.
  45. Shiau, L.C. and Kuo, S.Y. (2004), "Thermal buckling of composite sandwich plates", Mech. Based Design Struct. Machines, 32(1), 57-72. https://doi.org/10.1081/SME-120026590.
  46. Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003.
  47. Taraghi, I. and Fereidoon, A. (2016), "Non-destructive evaluation of damage modes in nanocomposite foam-core sandwich panel subjected to low-velocity impact", Compos. Part B Eng., 103, 51-9. https://doi.org/10.1016/j.compositesb.2016.08.009.
  48. Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. http://dx.doi.org/10.12989/sem.2016.60.4.547.
  49. Wang, B., Wu, L., Ma, L., Sun, Y. and Du, S. (2010), "Mechanical behavior of the sandwich structures with carbon fiber-reinforced pyramidal lattice truss core", Materials Design (1980-2015), 31(5), 2659-2563. https://doi.org/10.1016/j.matdes.2009.11.061.
  50. Wang, X., Elishakoff, I., Qiu, Z. and Kou, C. (2011), "Nonprobabilistic methods for natural frequency and buckling load of composite plate based on the experimental data", Mech. Based Design Struct. Machines, 39(1), 83-99. https://doi.org/10.1080/15397734.2011.537246.
  51. Xin, J., Wang, J., Yao, J. and Han, Q. (2011), "Vibration, buckling and dynamic stability of a cracked cylindrical shell with timevarying rotating speed", Mech. Based Design Struct. Machines, 39(4), 461-490. https://doi.org/10.1080/15397734.2011.569301.
  52. Yayli, M.O. (2018), "Buckling analysis of Euler columns embedded in an elastic medium with general elastic boundary conditions", Mech. Based Design Struct. Machines, 46(1), 110-22. https://doi.org/10.1080/15397734.2017.1292142.