Acknowledgement
Supported by : MHRD
References
- Al-Shamary, A.K., Karakuzu. R. and Ozdemir, O. (2016), "Lowvelocity impact response of sandwich composites with different foam core configurations", J. Sandwich Struct. Mater., 18(6), 754-768. https://doi.org/10.1177/1099636216653267.
- Alamatian, J. and Hosseini-Nejad, G.M. (2017), "An efficient explicit framework for determining the lowest structural buckling load using Dynamic Relaxation method", Mech. Based Design Struct. Machines, 45(4), 451-462. https://doi.org/10.1080/15397734.2016.1238765.
- Bart-Smith, H., Hutchinson, J.W. and Evans, A.G. (2001), "Measurement and analysis of the structural performance of cellular metal sandwich construction", J. Mech. Sci., 43(8), 1945-1963. https://doi.org/10.1016/S0020-7403(00)00070-9.
- Caliskan, U. and Apalak, M.K. (2017), "Low velocity bending impact behavior of foam core sandwich beams: Experimental", Compos. Part B Eng., 112, 158-175. https://doi.org/10.1016/j.compositesb.2016.12.038.
- Chalak, H.D., Chakrabarti, A. and Sheikh A.H. (2015), "Iqbal MA. Stability analysis of laminated soft core sandwich plates using higher order zig-zag plate theory", Mech. Adv. Mater. Struct., 22(11), 897-907. https://doi.org/10.1080/15376494.2013.874061.
- Deshpande, V.S. and Fleck, N.A. (2001), "Collapse of truss core sandwich beams in 3-point bending", J. Solid. Struct., 38(36-37),6275-305. https://doi.org/10.1016/S0020-7683(01)00103-2.
- Deshpande, V.S. and Fleck, N.A. (2003) "Energy absorption of an egg-box material", J. Mech. Phys. Solid., 51(1), 187-208. https://doi.org/10.1016/S0022-5096(02)00052-2.
- Dey, S., Mukhopadhyay, T. and Adhikari, S. (2017), "Metamodel based high-fidelity stochastic analysis of composite laminates: A concise review with critical comparative assessment", Compos. Struct., 171, 227-250. https://doi.org/10.1016/j.compstruct.2017.01.061.
- El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. http://dx.doi.org/10.12989/sem.2017.63.5.585.
- Elmossouess, B., Kebdani, S., Bouiadjra, M.B. and Tounsi, A. (2017), "A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates", Struct. Eng. Mech., 62(4), 401-415. http://dx.doi.org/10.12989/sem.2017.62.4.401.
- Fan, H., Zhou, Q., Yang, W. and Jin gjing, Z. (2010), "An experiment study on the failure mechanisms of woven textile sandwich panels under quasi-static loading", Compos. Part B Eng., 41(8), 686-92. https://doi.org/10.1016/j.compositesb.2010.07.004.
- Golchi, M., Talebitooti, M. and Talebitooti, R. (2018), "Thermal buckling and free vibration of FG truncated conical shells with stringer and ring stiffeners using differential quadrature method", Mech. Based Design Struct. Machines, 1-28. https://doi.org/10.1080/15397734.2018.1545588.
- Gupta, A. and Talha, M. (2018), "Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates", Mech. Based Design Struct. Machines, 1-9. https://doi.org/10.1080/15397734.2018.1449656.
- Hohe, J. (2015), "Load and frequency interaction effects in dynamic buckling of soft core sandwich structures", Compos. Struct., 132, 1006-1018. https://doi.org/10.1016/j.compstruct.2015.07.011.
- Ikeda, K., Ohsaki, M., Sudo, K. and Kitada, T. (2009), "Probabilistic analysis of buckling loads of structures via extended Koiter law", Struct. Eng. Mech., 32(1), 167-178. https://doi.org/10.12989/sem.2009.32.1.167
- Kacar, I. and Yildirim, V. (2016), "Free vibration/buckling analyses of noncylindrical initially compressed helical composite springs", Mech. Based Design Struct. Machines, 44(4), 340-353. https://doi.org/10.1080/15397734.2015.1066687.
- Kahya, V. (2016), "Buckling analysis of laminated composite and sandwich beams by the finite element method", Compos. Part B Eng., 91, 126-134. https://doi.org/10.1016/j.compositesb.2016.01.031.
- Kant, T. and Manjunath, B.S. (1998), "An unsymmetric FRC laminated finite element model with 12 degree of freedom per node", Eng Comput., 5(4), 300-308. https://doi.org/10.1108/eb023749
- Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2018a), "Spatial vulnerability analysis for the first ply failure strength of composite laminates including effect of delamination", Compos. Struct., 184, 554-567. https://doi.org/10.1016/j.compstruct.2017.09.078.
- Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2018b), "Stochastic dynamic analysis of twisted functionally graded plates", Compos. Part B Eng., 147, 259-278. https://doi.org/10.1016/j.compositesb.2018.03.043
- Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2018c), "Stochastic Investigation of Natural Frequency for Functionally Graded Plates", InIOP Conference Series Mater. Sci. Eng., 326(1), https://doi.org/10.1088/1757-899X/326/1/012003.
- Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2019), "Stochastic low-velocity impact on functionally graded plates: Probabilistic and non-probabilistic uncertainty quantification", Compos. Part B Eng., 159, 461-480. https://doi.org/10.1016/j.compositesb.2018.09.066.
- Khalili, S.M, Kheirikhah, M.M. and Malekzadeh Fard, K. (2015), "Buckling analysis of composite sandwich plates with flexible core using improved high-order theory", Mech. Adv. Mater. Struct., 22(4), 233-247. https://doi.org/10.1080/15376494.2012.736051.
- Kheirikhah, M.M., Khalili, S.M. and Fard, K.M. (2012), "Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory", European J. Mech. A/Solids, 31(1), 54-66. https://doi.org/10.1016/j.euromechsol.2011.07.003.
- Kolahchi, R.A. (2017), "Comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
- Kollar, L.P. and Springer, G.S. (2003), Mechanics of Compos. Struct., Cambridge, United Kingdom.
- Kumar, R.R., Mukhopadhyay, T., Pandey, K.M. and Dey, S. (2019), "Stochastic buckling analysis of sandwich plates: The importance of higher order modes", J. Mech. Sci., 152, 630-643. https://doi.org/10.1016/j.ijmecsci.2018.12.016.
- Lal, A., Kulkarni, N.M. and Singh, B.N. (2015), "Stochastic thermal post buckling response of elastically supported laminated piezoelectric composite plate using micromechanical approach", Curv. Layer. Struct., 2(1). https://doi.org/10.1515/cls-2015-0019.
- Lal, A., Saidane, N. and Singh, B.N. (2012), "Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel", Smart Struct. Syst., 9(6), 505-534. http://dx.doi.org/10.12989/sss.2012.9.6.505.
- Li, J., Tian, X., Han, Z. and Narita, Y. (2016), "Stochastic thermal buckling analysis of laminated plates using perturbation technique", Compos. Struct., 139, 1-2. https://doi.org/10.1016/j.compstruct.2015.11.076.
- Magnucka-Blandzi, E., Wisniewska-Mleczko, K., Smyczynski, M. J. and Kedzia, P. (2018), "Buckling of a sandwich symmetrical circular plate with varying mechanical properties of the core", Appl. Math. Mech., 39(7), 981-992. https://doi.org/10.1007/s10483-018-2347-8.
- McCormick, C. (2013), Radial Basis Function Network (RBFN) Tutorial. http://mccormickml.com/2013/08/15/radial-basisfunction-network-rbfn-tutorial.
- Mohammadimehr, M., Nejad, E.S. and Mehrabi, M. (2018), "Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores", Struct. Eng. Mech., 65(4), 491-504. http://dx.doi.org/10.12989/sem.2018.65.4.491.
- Moita, J.S., Araújo, A.L., Correia, V.F., Soares, C.M. and Soares, C.M. (2015), "Buckling and geometrically nonlinear analysis of sandwich structures", J. Mech. Sci., 92, 154-161. https://doi.org/10.1016/j.ijmecsci.2014.12.008.
- Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2017), "Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory", J. Sandwich Struct. Mater., 19(6), 736-769. https://doi.org/10.1177/1099636216643425.
- Mukhopadhyay, T., Naskar, S., Karsh, P.K., Dey, S. and You, Z. (2018), "Effect of delamination on the stochastic natural frequencies of composite laminates", Compos. Part B Eng., 154, 242-256. https://doi.org/10.1016/j.compositesb.2018.07.029.
- Muradova, A.D., Kurutz, M. and Stavroulakis, G.E. (2009), "Buckling simulation of a plate embedded in a unilaterally supported environment", Mech. Based Design Struct. Machines, 37(3), 349-370. https://doi.org/10.1080/15397730902938316.
- Nguyen, K., Thai, H.T. and Vo, T. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 91-120. http://dx.doi.org/10.12989/scs.2015.18.1.091.
- Panda, S.K. and Singh, B.N. (2013), "Thermal Postbuckling Behavior of Laminated Composite Spherical Shell Panel Using NFEM", Mech. Based Design Struct. Machines, 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330.
- Poortabib, A. and Maghsoudi, M. (2014), "The analytical solution for buckling of curved sandwich beams with a transversely flexible core subjected to uniform load", Struct. Eng. Mech., 52(2), 323-349. http://dx.doi.org/10.12989/sem.2014.52.2.323.
- Reddy, J.N. (1984), "A simple higher-order shear deformation theory for laminated composite plates", J. Appl Mech., 51(4), 745-752. https://doi.org/10.1016/j.compstruct.2013.06.013.
- Rizov, V., Shipsha, A. and Zenkert, D. (2005), "Indentation study of foam core sandwich composite panels", Compos. Struct., 69(1), 95-102. https://doi.org/10.1016/j.compstruct.2004.05.013.
- Seidi, J., Khalili, S.M. and Malekzadeh K. (2015), "Temperaturedependent buckling analysis of sandwich truncated conical shells with FG facesheets", Compos. Struct., 131, 682-691. https://doi.org/10.1016/j.compstruct.2015.04.068.
- Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017), "A new quasi-3D HSDT for buckling and vibration of FG plate", Struct. Eng. Mech., 64(6), 737-749. http://dx.doi.org/10.12989/.2017.64.6.737.
- Shiau, L.C. and Kuo, S.Y. (2004), "Thermal buckling of composite sandwich plates", Mech. Based Design Struct. Machines, 32(1), 57-72. https://doi.org/10.1081/SME-120026590.
- Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003.
- Taraghi, I. and Fereidoon, A. (2016), "Non-destructive evaluation of damage modes in nanocomposite foam-core sandwich panel subjected to low-velocity impact", Compos. Part B Eng., 103, 51-9. https://doi.org/10.1016/j.compositesb.2016.08.009.
- Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. http://dx.doi.org/10.12989/sem.2016.60.4.547.
- Wang, B., Wu, L., Ma, L., Sun, Y. and Du, S. (2010), "Mechanical behavior of the sandwich structures with carbon fiber-reinforced pyramidal lattice truss core", Materials Design (1980-2015), 31(5), 2659-2563. https://doi.org/10.1016/j.matdes.2009.11.061.
- Wang, X., Elishakoff, I., Qiu, Z. and Kou, C. (2011), "Nonprobabilistic methods for natural frequency and buckling load of composite plate based on the experimental data", Mech. Based Design Struct. Machines, 39(1), 83-99. https://doi.org/10.1080/15397734.2011.537246.
- Xin, J., Wang, J., Yao, J. and Han, Q. (2011), "Vibration, buckling and dynamic stability of a cracked cylindrical shell with timevarying rotating speed", Mech. Based Design Struct. Machines, 39(4), 461-490. https://doi.org/10.1080/15397734.2011.569301.
- Yayli, M.O. (2018), "Buckling analysis of Euler columns embedded in an elastic medium with general elastic boundary conditions", Mech. Based Design Struct. Machines, 46(1), 110-22. https://doi.org/10.1080/15397734.2017.1292142.