References
-
Beale, M.H., Hagan, M.T. and Demuth, H.B. (1992), "Neural Network
$Toolbox^{TM}$ User's Guide", The Mathworks Inc., MA, USA. - Cao, H., Zhou, Y.L., Chen, Z. and Abdel Wahab, M. (2017), "Form-finding analysis of suspension bridges using an explicit iterative approach", Struct. Eng. Mech., 62(1), 85-95. https://doi.org/10.12989/sem.2017.62.1.085.
- Chung, W. and Sotelino, E.D. (2006), "Three-dimensional finite element modeling of composite girder bridges", Eng. Struct., 28(1), 63-71. https://doi.org/10.1016/j.engstruct.2005.05.019.
- CSI (2002), SAP2000 V-14: Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual, Computers and Structures Inc, Berkeley, CA, USA.
- Demuth, H. and Beale, M. (2009), "Matlab neural network toolbox user's guide version 6", The MathWorks Inc., MA, USA.
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Digest, 30, 91-105. https://doi.org/10.1177/058310249803000201
- Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996), "Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review", https://doi.org/10.2172/249299.
- Gillich, G.R., Furdui, H., Wahab, M.A. and Korka, Z.I. (2019), "A robust damage detection method based on multi-modal analysis in variable temperature conditions", Mech. Syst. Signal Process., 115, 361-379. https://doi.org/10.1016/j.ymssp.2018.05.037
- Gonzalez-Perez, C. and Valdes-Gonzalez, J. (2011), "Identification of structural damage in a vehicular bridge using artificial neural networks", Struct. Health Monitor., 10, 33-48. https://doi.org/10.1177/1475921710365416.
- Gul, M. and Catbas, F.N. (2010), "Damage assessment with ambient vibration data using a novel time series analysis methodology", J. Struct. Eng., 137, 1518-26. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000366.
- Hakim, S. and Abdul Razak, H. (2013), "Adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANNs) for structural damage identification", Struct. Eng. Mech., 45(6), 779-802. http://dx.doi.org/10.12989/sem.2013.45.6.779.
- Khatir, S. and Abdel Wahab, M. (2018), "Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm", Eng. Fracture Mech., 205, https://doi.org/10.1016/j.engfracmech.2018.09.032.
- Khatir, S., Dekemele, K., Loccufier, M., Khatir, T. and Abdel Wahab, M. (2018), "Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization", Comptes Rendus Mecanique 346(2), 110-120. https://doi.org/10.1016/j.crme.2017.11.008.
- Khuc, T. and Catbas, F.N. (2017), "Computer vision-based displacement and vibration monitoring without using physical target on structures", Struct. Infrastructure Eng., 13(4), 505-516. https://doi.org/10.1080/15732479.2016.1164729.
- Kong, X., Cai, C. and Kong, B. (2014), "Damage detection based on transmissibility of a vehicle and bridge coupled system", J. Eng. Mech., 141(1), https://doi.org/10.1061/(ASCE)EM.1943-7889.0000821.
- Maia, N., Silva, J. and Ribeiro, A. (2001), "The transmissibility concept in multi-degree-of-freedom systems", Mech. Syst. Signal Process., 15(1), 129-37. https://doi.org/10.1006/mssp.2000.1356.
- Maia, N.M., Urgueira, A.P. and Almeida, R.A. (2011), "Whys and wherefores of transmissibility", Vibration Analysis and Control-New Trends and Developments, IntechOpen Limited, London, Uniuted Kingdom.
- Meruane, V. and Mahu, J. (2014), "Real-time structural damage assessment using artificial neural networks and antiresonant frequencies", Shock Vib., 2014. http://dx.doi.org/10.1155/2014/653279.
- Miyamoto, A. and Yabe, A. (2011), "Bridge condition assessment based on vibration responses of passenger vehicle", J. Physics Conf. Series, 305, https://doi.org/10.1088/1742-6596/305/1/012103.
- Nanthakumar, S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of material interfaces using a regularized level set method in piezoelectric structures", Inverse Problems Sci. Eng., 24(1), 153-176. https://doi.org/10.1080/17415977.2015.1017485.
- Neves, A., Gonzalez, I., Leander, J. and Karoumi, R. (2017), "Structural health monitoring of bridges: a model-free ANNbased approach to damage detection", J. Civil Struct. Health Monitor., 7(5), 689-702. https://doi.org/10.1007/s13349-017-0252-5.
- Posenato, D., Lanata, F., Inaudi, D. and Smith, I.F. (2008), "Model-free data interpretation for continuous monitoring of complex structures", Adv. Eng. Informatics, 22(1), 135-144. https://doi.org/10.1016/j.aei.2007.02.002.
- Qin, S., Zhou, Y.L., Cao, H. and Wahab, M.A. (2018), "Model updating in complex bridge structures using kriging model ensemble with genetic algorithm", KSCE J. Civil Eng., 22(1), 3567-3578. https://doi.org/10.1007/s12205-017-1107-7.
- Salawu, O. (1997), "Detection of structural damage through changes in frequency: A review", Eng. Struct., 19(9), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6.
- Samir, K., Brahim, B., Capozucca, R. and Abdel Wahab, M. (2018), "Damage detection in CFRP composite beams based on vibration analysis using proper orthogonal decomposition method with radial basis functions and cuckoo search algorithm", Compos. Struct., 187, 344-353. https://doi.org/10.1016/j.compstruct.2017.12.058.
- Shi, J., Xu, X., Wang, J. and Li, G. (2010), "Beam damage detection using computer vision technology", Nondestructive Testing Evaluation, 25, 189-204. https://doi.org/10.1080/10589750903242525.
- Specht, D.F. (1991), "A general regression neural network", IEEE Transactions on Neural Networks, 2(6), 568-576. https://doi.org/10.1109/72.97934.
- Tiachacht, S., Bouazzouni, A., Khatir, S., Abdel Wahab, M., Behtani, A. and Capozucca, R. (2018), "Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm", Eng. Struct., 177, 421-430. https://doi.org/10.1016/j.engstruct.2018.09.070.
- Urgueira, A.P., Almeida, R.A. and Maia, N.M. (2011), "On the use of the transmissibility concept for the evaluation of frequency response functions", Mech. Syst. Signal Process., 25(3), 940-951. https://doi.org/10.1016/j.ymssp.2010.07.015.
- Vu-Bac, N., Duong, T., Lahmer, T., Zhuang, X., Sauer, R., Park, H. and Rabczuk, T. (2018), "A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures", Comput. Method. Appl. Mech. Eng., 331, 427-455. https://doi.org/10.1016/j.cma.2017.09.034.
- Worden, K. and Manson, G. (2007), "The application of machine learning to structural health monitoring", Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365, 515-537. https://doi.org/10.1098/rsta.2006.1938.
- Yang, C. and Oyadiji, S.O. (2017), "Damage detection using modal frequency curve and squared residual wavelet coefficients-based damage indicator", Mech. Syst. Signal Process., 83, 385-405. https://doi.org/10.1016/j.ymssp.2016.06.021.
- Yang, Y. and Chang, K. (2009), "Extraction of bridge frequencies from the dynamic response of a passing vehicle enhanced by the EMD technique", J. Sound Vib., 322(4-5), 718-739. https://doi.org/10.1016/j.jsv.2008.11.028.
- Yang, Y., Li, Y. and Chang, K. (2014), "Constructing the mode shapes of a bridge from a passing vehicle: a theoretical study", Smart Struct. Syst., 13(5), 797-819. http://dx.doi.org/10.12989/sss.2014.13.5.797.
- Yang, Z., Yu, Z. and Sun, H. (2007), "On the cross correlation function amplitude vector and its application to structural damage detection", Mech. Syst. Signal Process., 21, 2918-2932. https://doi.org/10.1016/j.ymssp.2007.03.004
- Yin, Z., Liu, J., Luo, W. and Lu, Z. (2018), "An improved Big Bang-Big Crunch algorithm for structural damage detection", Struct. Eng. Mech., 68(6), 735-745. http://dx.doi.org/10.12989/sem.2018.68.6.735.
- Zang, C. and Imregun, M. (2001), "Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection", J. Sound Vib., 242(5), 813-827. https://doi.org/10.1006/jsvi.2000.3390.
- Zapico, J.L., GonzALez, M.P. and Worden, K. (2003), "Damage assessment using neural networks", Mech. Syst. Signal Process., 17, 119-125. https://doi.org/10.1006/mssp.2002.1547.
- Zheng, T., Liu, J., Luo, W. and Lu, Z. (2018), "Structural damage identification using cloud model based fruit fly optimization algorithm", Struct. Eng. Mech., 67, 245-254. http://dx.doi.org/10.12989/sem.2018.67.3.245.
- Zhou, Y.-L. and Abdel Wahab, M. (2017), "Cosine based and extended transmissibility damage indicators for structural damage detection", Eng. Struct. 141, 175-183. https://doi.org/10.1016/j.engstruct.2017.03.030.
- Zhou, Y.L., Cao, H., Liu, Q. and Wahab, M.A. (2017), "Outputbased structural damage detection by using correlation analysis together with transmissibility", Materials, 10(8), 866. https://doi.org/10.3390/ma10080866.
- Zhou, Y.L., Maia, N.M.M., Sampaio, R. and Wahab, M.A. (2016), "Structural damage detection using transmissibility together with hierarchical clustering analysis and similarity measure", Struct. Health Monitor., 16(6), 711-731. https://doi.org/10.1177/1475921716680849.
- Zhou, Y.L. and Wahab, M.A. (2017), "Damage detection using vibration data and dynamic transmissibility ensemble with autoassociative neural network", Mechanika, 23(5), 688-695. http://dx.doi.org/10.5755/j01.mech.23.5.15339.
Cited by
- Preparation and performance study of a new type of Tile transducer for roadway applications vol.31, pp.17, 2019, https://doi.org/10.1177/1045389x20942571
- A System Identification-Based Damage-Detection Method for Gravity Dams vol.2021, 2021, https://doi.org/10.1155/2021/6653254
- Damage detection in structures using modal curvatures gapped smoothing method and deep learning vol.77, pp.1, 2019, https://doi.org/10.12989/sem.2021.77.1.047
- Connection stiffness reduction analysis in steel bridge via deep CNN and modal experimental data vol.77, pp.4, 2019, https://doi.org/10.12989/sem.2021.77.4.495
- Damage detection in steel plates using feed-forward neural network coupled with hybrid particle swarm optimization and gravitational search algorithm vol.22, pp.6, 2021, https://doi.org/10.1631/jzus.a2000316