DOI QR코드

DOI QR Code

Analysis of size distribution of riverbed gravel through digital image processing

영상 처리에 의한 하상자갈의 입도분포 분석

  • Received : 2019.05.09
  • Accepted : 2019.06.24
  • Published : 2019.07.31

Abstract

This study presents a new method of estimating the size distribution of river bed gravel through image processing. The analysis was done in two steps; first the individual grain images were analyzed and then the grain particle segmentation of river-bed images were processed. In the first part of the analysis, the relationships (long axes, intermediate axes and projective areas) between grain features from images and those measured were compared. For this analysis, 240 gravel particles were collected at three river stations. All particles were measured with vernier calipers and weighed with scales. The measured data showed that river gravel had shape factors of 0.514~0.585. It was found that the weight of gravel had a stronger correlation with the projective areas than the long or intermediate axes. Using these results, we were able to establish an area-weight formula. In the second step, we calculated the projective areas of the river-bed gravels by detecting their edge lines using the ImageJ program. The projective areas of the gravels were converted to the grain-size distribution using the formula previously established. The proposed method was applied to 3 small- and medium- sized rivers in Korea. Comparisons of the analyzed size distributions with those measured showed that the proposed method could estimate the median diameter within a fair error range. However, the estimated distributions showed a slight deviation from the observed value, which is something that needs improvement in the future.

본 연구의 목적은 영상 처리를 통하여 자갈 이상의 조립질 재료로 이루어진 하상의 입도 분포를 추정하는 기법을 개발하는 것이다. 전체 과정은 개별 입자의 영상 분석과정과 혼합 입경으로 이루어진 하상 영상에서 입자를 추출하고 분석하여 입도 분포를 추정하는 두 과정으로 이루어졌다. 먼저 개별 입자들의 영상에 나타난 평면 특성(장축, 중간축, 면적 등)이 실제 입자와 어떤 관계를 가지는지 분석하였다. 이를 위하여, 3개 중소하천에서 240개의 자갈 시료를 채취한 뒤, 각 입자의 장축, 중간축, 단축의 길이와 중량을 측정하였다. 또, 채취된 입자를 하나씩 촬영하여 영상을 만들고, 영상에서 장축과 중간축, 투영면적을 계측하였다. 영상에서 계측된 정보와 버니어 캘리퍼스와 저울을 이용하여 실제 측정한 자료를 비교하였다. 입자의 개별 측정 결과 자갈 하천의 하상 재료의 형상계수는 0.514~0.585 이었다. 또한 자갈의 중량은 장축이나 중간축보다는 투영면적과의 상관성이 더 높다. 따라서 영상의 투영면적에서 중량을 산정할 수 있는 관계식을 작성하였다. 또, 자갈하상을 촬영한 영상에서 ImageJ 프로그램를 이용하여 입자 하나하나의 윤곽을 검출한 뒤, 입자의 투영면적을 산출하였다. 그리고 투영면적과중량의 관계식을 이용하여, 중량입도분포를 추정하는 방법을 제시하였다. 제안된 방법을 3개 하천에 적용해 본 결과 비교적 상당한 정확도로 자갈의 입도분포를 추정할 수 있었다. 다만, 추정된 입도곡선에서 일부분은 실측된 입도곡선과 차이를 보였으며, 이는 추후 개선되어야 할 부분이다.

Keywords

SJOHCI_2019_v52n7_493_f0001.png 이미지

Fig. 1. Analysis method for various riverbed materials (Kondolf and Piégay, 2003)

SJOHCI_2019_v52n7_493_f0002.png 이미지

Fig. 2. Riverbed materials at test sites

SJOHCI_2019_v52n7_493_f0003.png 이미지

Fig. 3. Image analyses of individual gravel grain

SJOHCI_2019_v52n7_493_f0004.png 이미지

Fig. 4. Relationship between image area and weight of riverbed gravels

SJOHCI_2019_v52n7_493_f0005.png 이미지

Fig. 5. Comparison of measured weights and estimated weights of riverbed gravels

SJOHCI_2019_v52n7_493_f0006.png 이미지

Fig. 6. Sample image for image analyses of riverbed grains (Terazawa and Yamazaki, 2007)

SJOHCI_2019_v52n7_493_f0007.png 이미지

Fig. 7. Sample image after perspective transform

SJOHCI_2019_v52n7_493_f0008.png 이미지

Fig. 8. Procedure of grain separation with ImageJ

SJOHCI_2019_v52n7_493_f0009.png 이미지

Fig. 9. Grain size distribution of the Daejong River

SJOHCI_2019_v52n7_493_f0010.png 이미지

Fig. 10. Grain size distribution of the Milyang River

SJOHCI_2019_v52n7_493_f0011.png 이미지

Fig. 11. Grain size distribution of the Hyungsan River

Table 1. Comparison of bed material sizes in river masterplan reports and actual states

SJOHCI_2019_v52n7_493_t0001.png 이미지

Table 2. Analyzed relationships of test rivers

SJOHCI_2019_v52n7_493_t0002.png 이미지

References

  1. Butler, J. B., Lane, S. N., and Chandler, J. H. (2002). "Automated extraction of grain-size data from gravel surfaces using digital image processing." Journal of Hydraulic Research, Vol. 39, No. 4, pp. 1-11.
  2. Cho, W. (2014). Analysis of grain-size distribution of gravel river-bed using digital image processing. Master of Science, Dong-eui University.
  3. Chung, C. H., and Chang, F. J. (2013). "A refined automated grain sizing method for estimating river-bed grain size distribution of digital images." Journal of Hydrology, Vol. 486, pp. 224-233. https://doi.org/10.1016/j.jhydrol.2013.01.026
  4. Church, M. A., McLean, D. G., and Wolcott, J. F. (1987). River bed gravels: sampling and analysis. on Sediment Transport in Gravel-bed Rivers, Thorne, C.R., Bathurst, J. C., and Hey, R. D. (eds), John Wiley & Sons, Chichester, pp. 43-78.
  5. City of Ulsan (2002). River management master plan of the Hyungsan River, Yeonhwa River, and Mabyung River.
  6. Graham, D. J., Rice, S. P., and Reid, I. (2005). "A transferable method for the automated grain sizing of river gravels." Water Resources Research, Vol. 41, W07020, pp. 1-12.
  7. Harb, G., and Schneider, J. (2009). "Application of two automated grain sizing approaches and comparison with traditional methods." Proceeding of 33rd IAHR Congress.
  8. Hwang, T. J., Cho, J. Y., and Lee, K. H. (2010) "Gradation curve of aggregate using digital image process" Journal of Disaster Management, Vol. 10, No. 2, pp. 31-37.
  9. Kellerhals, R., and Bray, D. I. (1970) "Sampling procedures for coarse fluvial sediments." Journal of the Hydraulics Division, ASCE, Vol. 97, HY8.
  10. Kondolf, G. M., and H. Piegay, Eds. (2003). Tools in fluvial geomorphology. John Wiley & Sons, Ltd., New York.
  11. Korea Water Resources Association (KWRA) (2009). Standards of river design and explanation.
  12. Kuroda, Y., Fukuoka, S., Yamamoto, T., Yoshida, K., and Iuchi, T. (2005). "Formation mechanism of gravel bed rivers and its characteristics of grain size distribution." Advances in River Engineering, JSCE, Vol. 11, pp. 363-368.
  13. Kyungsnagbukdo (1997). River management master plan of the Daejong River.
  14. Lee, K. W., Kim, Y. J., Hwang, T. J., and Cho, J. Y. (2011) "Gradation curve of coarse aggregate by digital image analysis." LHI Journal, Vol. 2, No. 1, pp. 69-78.
  15. Ministry of Land, Transport and Maritime Affairs (MLTMA) (2009). River management master plan of the Nakdong River.
  16. Nakaji, T. (2012) "Investigation of river bed material using photographic techniques." Proceeding of Heisei 22 Annual Conference of Kinki Regional Development Bureau.
  17. Ohashi, K., Yasuda, S., and Ihara, I. (2010). "Investigation of riverbed material using image processing." Proceeding of Annual Symposium 2010 of Japan Society of Erosion Control Engineering, pp. 286-287.
  18. Pratt, W. K. (2007). Digital Image Processing. 4th ed., John Wiley & Sons, Inc., New York. p. 386.
  19. Strom, K. B., Kuhns, R. D., and Lucas, H. J. (2010). "Comparison of automated image-based grain sizing to standard pebble count methods." Journal of Hydraulic Engineering, Vol. 136, No. 8, pp. 461-473. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000198
  20. Terazawa, N., and Yamazaki, N. (2007). "Investigation techniques of grain size distribution in gravel bed rivers including large cobbles." Heisei 19 Annual Conference of Research, Ministry of Land, Infrastructure, Transport and Tourism.
  21. Uchio, M., Nakagawa, H., Sawada, T., Yokoyama, K., Uesugi, M., and Fukuda, Y. (2005). "Development of a measuring system for particle size distribution in gravel-bed rivers by using an image processing technique." Journal of the Japan Society of Erosion Control Engineering, Vol. 58, No. 2, pp. 26-31.