DOI QR코드

DOI QR Code

The Classification of random graph models using graph centralities

  • Cho, Tae-Soo (Dept. of Computer Engineering, Kyung Hee University) ;
  • Han, Chi-Geun (Dept. of Computer Engineering, Kyung Hee University) ;
  • Lee, Sang-Hoon (Dept. of Computer Engineering, Kyung Hee University)
  • 투고 : 2019.04.02
  • 심사 : 2019.06.27
  • 발행 : 2019.07.31

초록

In this paper, a classification method of random graph models is proposed and it is based on centralities of the random graphs. Similarity between two random graphs is measured for the classification of random graph models. The similarity between two random graph models $G^{R_1}$ and $G^{R_2}$ is defined by the distance of $G^{R_1}$ and $G^{R_2}$, where $G^{R_2}$ is a set of random graph $G^{R_2}=\{G_1^{R_2},...,G_p^{R_2}\}$ that have the same number of nodes and edges as random graph $G^{R_1}$. The distance($G^{R_1},G^{R_2}$) is obtained by comparing centralities of $G^{R_1}$ and $G^{R_2}$. Through the computational experiments, we show that it is possible to compare random graph models regardless of the number of vertices or edges of the random graphs. Also, it is possible to identify and classify the properties of the random graph models by measuring and comparing similarities between random graph models.

키워드

CPTSCQ_2019_v24n7_61_f0001.png 이미지

Fig. 1. Example RGG graph

CPTSCQ_2019_v24n7_61_f0002.png 이미지

Fig. 2. Example RRG graph

CPTSCQ_2019_v24n7_61_f0003.png 이미지

Fig. 3. Example WS graph

CPTSCQ_2019_v24n7_61_f0004.png 이미지

Fig. 4. Graphs with specific properties

CPTSCQ_2019_v24n7_61_f0005.png 이미지

Fig. 5. Centralities of graphs with specific properties

CPTSCQ_2019_v24n7_61_f0006.png 이미지

Fig. 6. Calculation of distance using centralities

CPTSCQ_2019_v24n7_61_f0007.png 이미지

Fig. 7. Flowchart for calculating distances

CPTSCQ_2019_v24n7_61_f0008.png 이미지

Fig. 8. Distances of experiment

Table 1. distance(GPS, GER)

CPTSCQ_2019_v24n7_61_t0001.png 이미지

Table 2. distance(GPS, GBA)

CPTSCQ_2019_v24n7_61_t0002.png 이미지

Table 3. distance(GER, GBA)

CPTSCQ_2019_v24n7_61_t0003.png 이미지

Table 4. Random graph model sets

CPTSCQ_2019_v24n7_61_t0004.png 이미지

Table 5. distance($G^{H}_{G}$, GPS)

CPTSCQ_2019_v24n7_61_t0005.png 이미지

Table 6. distance($G^{H}_{G}$, GBA)

CPTSCQ_2019_v24n7_61_t0006.png 이미지

Table 7. distance($G^{H}_{G}$, GPS)

CPTSCQ_2019_v24n7_61_t0007.png 이미지

Table 8. distance ($G^{H}_{R}$, GBA)

CPTSCQ_2019_v24n7_61_t0008.png 이미지

Table 9. distance ($G^{H}_{W_0}$, GPS)

CPTSCQ_2019_v24n7_61_t0009.png 이미지

Table 10. distance ($G^{H}_{W_0}$, GBA)

CPTSCQ_2019_v24n7_61_t0010.png 이미지

Table 11. distance ($G^{H}_{W_1}$, GPS)

CPTSCQ_2019_v24n7_61_t0011.png 이미지

Table 12. distance ($G^{H}_{W_1}$, GBA)

CPTSCQ_2019_v24n7_61_t0012.png 이미지

Table 13. distance ($G^{H}_{B}$, GPS)

CPTSCQ_2019_v24n7_61_t0013.png 이미지

Table 14. distance ($G^{H}_{B}$, GBA)

CPTSCQ_2019_v24n7_61_t0014.png 이미지

Table 15. distance ($G^{H}_{*}$, GPS)

CPTSCQ_2019_v24n7_61_t0015.png 이미지

Table 16. distance ($G^{H}_{*}$, GBA)

CPTSCQ_2019_v24n7_61_t0016.png 이미지

참고문헌

  1. West, Douglas Brent. Introduction to graph theory. Vol. 2. Upper Saddle River: Prentice hall, 2001.
  2. Bollobas, Bela. "Random graphs." Modern graph theory. Springer, New York, NY, 1998. 215-252.
  3. Sanfeliu, Alberto, and King-Sun Fu. "A distance measure between attributed relational graphs for pattern recognition." IEEE transactions on systems, man, and cybernetics 3 (1983): 353-362. https://doi.org/10.1109/TSMC.1983.6313167
  4. Akoglu, Leman, Hanghang Tong, and Danai Koutra. "Graph based anomaly detection and description: a survey." Data mining and knowledge discovery 29.3 (2015): 626-688. https://doi.org/10.1007/s10618-014-0365-y
  5. Pignolet, Yvonne Anne, et al. "The many faces of graph dynamics." Journal of Statistical Mechanics: Theory and Experiment 2017.6 (2017): 063401. https://doi.org/10.1088/1742-5468/aa71ce
  6. Tae-Soo Cho, Chi-Geun Han, and Sang-Hoon Lee. "Measurement of graphs similarity using graph centralities." JKCSI 23.12 (2018): 57-64.
  7. Freeman, Linton C. "A set of measures of centrality based on betweenness." Sociometry (1977): 35-41.
  8. Okamoto, Kazuya, Wei Chen, and Xiang-Yang Li. "Ranking of closeness centrality for large-scale social networks." International Workshop on Frontiers in Algorithmics. Springer, Berlin, Heidelberg, 2008.
  9. Freeman, Linton C. "Centrality in social networks conceptual clarification." Social networks 1.3 (1978): 215-239. https://doi.org/10.1016/0378-8733(78)90021-7
  10. Bonacich, Phillip. "Some unique properties of eigenvector centrality." Social networks 29.4 (2007): 555-564. https://doi.org/10.1016/j.socnet.2007.04.002
  11. Gilbert, Edgar N. "Random graphs." The Annals of Mathematical Statistics 30.4 (1959): 1141-1144. https://doi.org/10.1214/aoms/1177706098
  12. ERDdS, P., and A. R&WI. "On random graphs I." Publ. Math. Debrecen 6 (1959): 290-297.
  13. Watts, Duncan J., and Steven H. Strogatz. "Collective dynamics of 'small-world'networks." nature 393.6684 (1998): 440. https://doi.org/10.1038/30918
  14. Bianconi, Ginestra, and A-L. Barabasi. "Competition and multiscaling in evolving networks." EPL (Europhysics Letters) 54.4 (2001): 436. https://doi.org/10.1209/epl/i2001-00260-6
  15. Barabasi, Albert-Laszlo, and Reka Albert. "Emergence of scaling in random networks." science 286.5439 (1999): 509-512. https://doi.org/10.1126/science.286.5439.509
  16. Penrose, Mathew D. "On k-connectivity for a geometric random graph." Random Structures & Algorithms 15.2 (1999): 145-164 https://doi.org/10.1002/(SICI)1098-2418(199909)15:2<145::AID-RSA2>3.0.CO;2-G