DOI QR코드

DOI QR Code

Effects on Microbial Activity of Aerobic Granular Sludge (AGS) in High-Salinity Wastewater

고농도 염분함유 폐수가 호기성 그래뉼 슬러지의 미생물 활성도에 미치는 영향

  • Kim, Hyun-Gu (BlueBank Co., Ltd., Business incubator center, Myongji University) ;
  • Ahn, Dae-Hee (BlueBank Co., Ltd., Business incubator center, Myongji University)
  • Received : 2019.06.05
  • Accepted : 2019.06.28
  • Published : 2019.07.31

Abstract

The purpose of this study was to evaluate the effect of high-salinity wastewater on the microbial activity of Aerobic Granule Sludge (AGS). Laboratory-scale experiments were performed using a sequencing batch reactor, and the Chemical Oxygen Demand (COD), nitrogen removal efficiency, sludge precipitability, and microbial activity were evaluated under various salinity injection. The COD removal efficiency was found to decrease gradually to 3.0% salinity injection, and it tended to recover slightly from 4.0%. The specific nitrification rate was 0.043 - 0.139 mg $NH_4{^+}-N/mg$ $MLVSS{\cdot}day$. The specific denitrification rate was 0.069 - 0.108 mg $NO_3{^-}-N/mg$ $MLVSS{\cdot}day$. The sludge volume index ($SVI_{30}$) ultimately decreased to 46 mL/g. The specific oxygen uptake rate decreased from an initial value 120.3 to a final value 70.7 mg $O_2/g$ $MLVSS{\cdot}hr$. Therefore, salinity injection affects the activity of AGS, causing degradation of the COD and nitrogen removal efficiency. It can be used as an indicator to objectively determine the effect of salinity on microbial activity.

Keywords

References

  1. American Public Health Association (APHA), 2008, Standard methods for the examination of water and wastewater, 21st edition, American public health association, Washington D.C., USA.
  2. Bassin, J. P., Kleerebezem, R., Muyzer, G., Rosado, A. S., van Loosdrecht, M. C., Dezotti, M., 2012, Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors, Appl. Microbiol. Biotechnol., 93, 1281-1294. https://doi.org/10.1007/s00253-011-3428-7
  3. Cai, W., Jin, M., Zhao, Z., Lei, Z., Zhang, Z., Adachi, Y., Lee, D. J., 2018, Influence of ferrous iron dosing strategy on aerobic granulation of activated sludge and bioavailability of phosphorus accumulated in granules, Bioresour. Technol. Rep., 2, 7-14. https://doi.org/10.1016/j.biteb.2018.03.004
  4. Campos, J. L., Mosquera-Corral, A., Sánchez, M., Mendez, R., Lema, J. M., 2002, Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit, Water Res., 36, 2555-2560. https://doi.org/10.1016/S0043-1354(01)00467-5
  5. Chen, Y., He, H., Liu, H., Li, H., Zeng, G., Xia, X., Yang, C., 2018, Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors, Bioresour. Technol., 249, 890-899. https://doi.org/10.1016/j.biortech.2017.10.092
  6. Choi, Y. B., 2011, Effects of salt concentration on the biological treatment of seafood wastewater, Ph. D. Dissertation, Kangwon University, Chuncheon.
  7. Chowdhury, P., Viraraghavan, T., Srinivasan, A., 2010, Biological treatment processes for fish processing wastewater-A review, Bioresour. Technol., 101, 439-449. https://doi.org/10.1016/j.biortech.2009.08.065
  8. Corsino, S. F., Capodici, M., Morici, C., Torregrossa, M., 2016, Simultaneous nitritation-denitritation for the treatment of high-strength nitrogen in hypersaline wastewater by aerobic granular sludge, Water Res., 88, 329-336. https://doi.org/10.1016/j.watres.2015.10.041
  9. Corsino, S. F., Capodici, M., Pippo, F. D., Tandoi, V., Torregrossa, M., 2019, Comparison between kinetics of autochthonous marine bacteria in activated sludge and granular sludge systems at different salinity and SRTs, Water Res., 148, 425-437. https://doi.org/10.1016/j.watres.2018.10.086
  10. Cui, Y. W., Peng, Y. Z., Peng, X. Q., Ye, L., 2006, Achieving biological nitrogen removal via nitrite by salt inhibition, Water Sci. Technol., 53(6), 115-122. https://doi.org/10.2166/wst.2006.183
  11. Fan, J., Zhang, J., Zhang, C., Ren, L., Shi, Q., 2011, Adsorption of 2,4,6-trichlorophenol from aqueous solution onto activated carbon derived from loosestrife, Desalination, 267, 139-146. https://doi.org/10.1016/j.desal.2010.09.016
  12. He, H., Chen, Y., Li, X., Cheng, Y., Yang, C., Zeng, G., 2017, Influence of salinity on microorganisms in activated sludge processes: A review, Int. Biodeterior. Biodegradation, 119, 520-527. https://doi.org/10.1016/j.ibiod.2016.10.007
  13. He, Q., Zhang, W., Zhang, S., Zou, Z., Wang, H., 2017, Performance and microbial population dynamics during stable operation and reactivation after extended idle conditions in an aerobic granular sequencing batch reactor, Bioresour. Technol., 238, 116-121. https://doi.org/10.1016/j.biortech.2017.03.181
  14. Jo, Y. N., 2017, Effect of salt concentration on the sulfur denitrification efficiency, Master Dissertation, Kangwon University, Chuncheon.
  15. Joo, H. J., Kim, S. C., Lee, K. H., 2010, Applicability study of reactor design in sewage treatment plant using specific oxygen uptake rate, J. Korean Soc. Water Qual., 26(1), 140-147.
  16. Kim, H. G., Ahn, D. H., Cho, E. H., Kim, H. Y., Ye, H. Y., Mun, J. S., 2016, A Study on the biological treatment of RO concentrate using aerobic granular sludge, J. Korean Soc. Environ. Eng., 38(2), 79-86. https://doi.org/10.4491/KSEE.2016.38.2.79
  17. Kim, K. Y., 2017, Influence on nitrification of salinity wastewater in biofilter system, Master Dissertation, Andong University, Andong.
  18. Kim, S. C., 2007, A Study on the SOUR with temperature and SRT variation for designing the aerator in biological wastewater treatment process, Ph. D. Dissertation, Kyonggi University, Suwon.
  19. Kim, S. J., 2005, A Study on the treatment of organic and nitrogen in the saline wastewater using SBR, Master Dissertation, Ulsan University, Ulsan.
  20. Kim, Y. K., Kang, S. H., 2012, Evaluation of the effect of high salinity RO concentrate on the microbial acclimation/cultivation characteristics in biological wastewater treatment process, J. Environ. Impact Assess., 21(5), 707-713. https://doi.org/10.14249/EIA.2012.21.5.707
  21. Kinyage, J. P. H., Pedersen, P. B., Pedersen, L. F., 2019, Effects of abrupt salinity increase on nitrification processes in a freshwater moving bed biofilter, Aquac. Eng., 84, 91-98. https://doi.org/10.1016/j.aquaeng.2018.12.005
  22. Moon, B. H., Yoon, C. H., Seo, G. T., Kim, S. S., 2002, Effects of C/N ratio and salt concentration on pollutant removal in SBR, J. Korean Soc. Environ. Eng., 24(2), 251-260.
  23. Moussa, M. S., Sumanasekera, D. U., Ibrahim, S. H., Lubberding, H. J., Hooijmans, C. M., Gijzen, H. J., van Loosdrecht, M. C., 2006, Long term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of nitrifiers, Water Res., 40, 1377-1388. https://doi.org/10.1016/j.watres.2006.01.029
  24. Muthukumaran, S., Baskaran, K., 2013, Organic and nutrient reduction in a fish processing facility-A case study, Int. Biodeterior. Biodegradation, 85, 563-570. https://doi.org/10.1016/j.ibiod.2013.03.023
  25. Othman, I., Anuar, A. N., Ujang, Z., Rosman, N. H., Harun, H., Chelliapan, S., 2013, Livestock wastewater treatment using aerobic granular sludge, Bioresour. Technol., 133, 630-634. https://doi.org/10.1016/j.biortech.2013.01.149
  26. Ramaswami, S., Uddin, F. M. J., Behrendt, J., Otterpohl, R., 2019, High-rate nitrification of saline wastewaters using fixed-bed reactors, J. Environ. Manag., 243, 444-452. https://doi.org/10.1016/j.jenvman.2019.05.020
  27. Taheri, E., Hajian, M. H. K., Amin, M. M., Nikaeen, M., Hassanzadeh, A., 2012, Treatment of saline wastewater by a sequencing batch reactor with emphasis on aerobic granule formation, Bioresour. Technol., 111, 21-26. https://doi.org/10.1016/j.biortech.2012.01.164
  28. Tan, X., Acquah, I., Liu, H., Li, W., Tan, S., 2019, A Critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective, Chemosphere, 220, 1150-1162. https://doi.org/10.1016/j.chemosphere.2019.01.027
  29. Wan, C., Yang, X., Lee, D. J., Liu, X., Sun, S., Chen, C., 2014, Partial nitrification of wastewaters with high NaCl concentrations by aerobic granules in continuous-flow reactor, Bioresour. Technol., 152, 1-6. https://doi.org/10.1016/j.biortech.2013.10.112
  30. Wang, Z., Gao, M., She, Z., Wang, S., Jin, C., Zhao, Y., Yang, S., Guo, L., 2015, Effects of salinity on performance, extracellular polymeric substances and microbial community of an aerobic granular sequencing batch reactor, Sep. Purif. Technol., 144, 223-231. https://doi.org/10.1016/j.seppur.2015.02.042
  31. Wang, Z., van Loosdrecht, M. C. M., Saikaly, P. E., 2017, Gradual adaptation to salt and dissolved oxygen: Strategies to minimize adverse effect of salinity on aerobic granular sludge, Water Res., 124, 702-712. https://doi.org/10.1016/j.watres.2017.08.026
  32. Winkler, M. K. H., Bassin, J. P., Kleerebezem, R., van der Lans, R. G. J. M., 2012, Temperature and salt effects on settling velocity in granular sludge technology, Water Res., 46, 5445-5451. https://doi.org/10.1016/j.watres.2012.07.022
  33. Yogalakshmi, K. N., Joseph, K., 2010, Effect of transient sodium chloride shock loads on the performance of submerged membrane bioreactor, Bioresour. Technol. 101(18), 7054-7061. https://doi.org/10.1016/j.biortech.2010.03.135
  34. Zhang, W., Xiao, B., Li, Y., Liu, Y., Guo, X., 2018, Effects of return sludge alkaline treatment on sludge reduction in laboratory-scale anaerobic-anoxic-oxic process, J. Biotechnol., 285, 1-5. https://doi.org/10.1016/j.jbiotec.2018.08.018
  35. Zhao, Y., Park, H. D., Park, J. H., Zhang, F., Chen, C., Li, X., Zhao, D., Zhao, F., 2016, Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor, Bioresour. Technol. 216, 808-816. https://doi.org/10.1016/j.biortech.2016.06.032