Fig. 1. Transient Response at a Center of Camara with Comparing to the Pixel Size
Fig. 2. Part Names and Materials of Equipment
Fig. 3. Boundary Condition and Loading Conditions
Fig. 4. Mode Shapes of 1st to 4th Modes
Fig. 5. Transient Response versus time of X-axis Impact
Fig. 6. Transient Response versus time of Y-axis Impact
Fig. 7. Design Variables for Sensitivity Analysis
Fig. 8. Proposed Weight Reduction Design A
Fig. 9. Proposed Weight Reduction Design B
Table 1. Maximum Transient Response due to Impact of Moving Parts
Table 2. Sensitivities of Design Variables
Table 3. Weight Reduction and Maximum Displacement of Proposed Designs
참고문헌
- S. K. Kwon. (2012). Weight Reduction for Compressor Brackets, KSMTE, 21(1), 65-69.
- D. W. Kim, J. H. Lim, B. M. Yu & K. S. Lee. (2018). Thickness Optimization for the Spar Cap of Wind Turbine Blade based on Tsai-Wu and Puck Theory. The Journal of Korean society for Aeronautical & Space Sciences, 18(4), 79-80.
- D. W. Kim, G. Jeong, J. H. Lim, J. W. Lim, B. M. Yu & K. S. Lee. (2018). A Lightweight Design of the Spar cap of Wind Turbine Blades with Carbon Fiber Composite and Ply Resuction Ratio. The Journal of Aerospace System Engineering, 12(2), 66-75. DOI: 10.20910/JASE.2018.12.2.66
- M. N. Rizai & J. E. Bernard. (1987). An Efficient Method to Predict the Effect of Design Modifications. Journal of Mechanisms, Transmissions, and Automation in Design, ASME, 109(3), 377-384. DOI:10.1115/1.3258806
- SIEMENS. (2014). Design sensitivity and Optimization User's Guide, Siemens PLM Software in NX/NASTRAN user manual, p.151
- KIMM. (1991). Sensitivity analysis for optimal structural design, Gyeonggi : Science and Technology Ministry,
- D. J. Inman. (2015). Engineering Vibration. 4rd-ed (J. H. Hwang, G. B. Lee, T. G. Jung, B. D. Lim, C. W. Ahn, Trans), Pearson, Korea, (Original work published in 2013), pp. 199-217
- Ito Yochi. (1994). Knowledge of mobile cranes. Kajima Institute Publish Co, Ltd, Japan, p101-102
- KISTI, (2017). Semiconductor measurement/inspection equipment Technology Trends. ITFIND, http://www.itfind.or.kr/
- M. S. Koh. S. K. Kwon & S. Lee. (2015). A Study for the Dynamic Characteristics and Correlation with Test Result of Gantry Robot based on Finite Element Analysis. Journal of Digital Convergence 13(1), 269-274. DOI: 10.14400/jdc.2015.13.1.269
- D. J. Inman. (2012). Engineering Vibration. 3rd-ed, (J. H. Hwang, G. B. Lee, T. G. Jung, B. D. Lim, C. W. Ahn, Trans), Pearson, Korea, (Original work published in 2007) p. 333.
- C. N. Kim. (2019). Weight reduction of XY stage structure using sensitivity analysis, Unpublished master's thesis, Hoseo University, Asan, Korea
- O. Kolditz. (2002). Finite Difference Method. In: Computational Methods in Environmental Fluid Mechanics. Springer, Berlin, pp97-127
- Y. C. Yoon. (2008). Materials using MLS Finite Difference Method, The Computational structural Engineering Institute, 21(1), pp 2-7
- Y. D. Ha, T. U. Byun & S. H. Choy. (2014). Density-based Topology Design Optimization of Piezoelectric Crystal Resonators. COSEIK. J. Comput. Stuct. Eng., 27(2), 63-70.