DOI QR코드

DOI QR Code

Dose-Dependent Inhibition of Melanoma Differentiation-Associated Gene 5-Mediated Activation of Type I Interferon Responses by Methyltransferase of Hepatitis E Virus

  • Myoung, Jinjong (Korea Zoonosis Research Institute and Genetic Engineering Research Institute, Chonbuk National University) ;
  • Min, Kang Sang (Korea Zoonosis Research Institute and Genetic Engineering Research Institute, Chonbuk National University)
  • Received : 2019.05.17
  • Accepted : 2019.06.10
  • Published : 2019.07.28

Abstract

Hepatitis E virus (HEV) accounts for 20 million infections in humans worldwide. In most cases, the infections are self-limiting while HEV genotype 1 infection cases may lead to lethal infections in pregnant women (~ 20% fatality). The lack of small animal models has hampered detailed analysis of virus-host interactions and HEV-induced pathology. Here, by employing a recently developed culture-adapted HEV, we demonstrated that methyltransferase, a non-structural protein, strongly inhibits melanoma differentiation-associated gene 5 (MDA5)-mediated activation of type I interferon responses. Compared to uninfected controls, HEV-infected cells display significantly lower levels of $IFN-{\beta}$ promoter activation when assessed by luciferase assay and RT-PCR. HEV genome-wide screening showed that HEV-encoded methyltransferase (MeT) strongly inhibits MDA5-mediated transcriptional activation of $IFN-{\beta}$ and $NF-{\kappa}B$ in a dose-responsive manner whether or not it is expressed in the presence/absence of a tag fused to it. Taken together, current studies clearly demonstrated that HEV MeT is a novel antagonist of MDA5-mediated induction of $IFN-{\beta}$ signaling.

Keywords

References

  1. Denner J. 2019. Hepatitis E virus (HEV)-the future. Viruses 11(3) pii: E251. https://doi.org/10.3390/v11030251
  2. Berke T, Matson DO. 2000. Reclassification of the Caliciviridae into distinct genera and exclusion of hepatitis E virus from the family on the basis of comparative phylogenetic analysis. Arch. Virol. 145: 1421-1436. https://doi.org/10.1007/s007050070099
  3. Kang HS, Myoung J, So EY, Bahk YY, Kim BS. 2016. Transgenic expression of non-structural genes of Theiler's virus suppresses initial viral replication and pathogenesis of demyelination. J. Neuroinflammation 13: 133. https://doi.org/10.1186/s12974-016-0597-4
  4. Kang S, Myoung J. 2017. Host innate immunity against hepatitis E virus and viral evasion mechanisms. J. Microbiol. Biotechnol. 27: 1727-1735. https://doi.org/10.4014/jmb.1708.08045
  5. Purdy MA, Khudyakov YE. 2010. Evolutionary history and population dynamics of hepatitis E virus. PLoS One 5: e14376. https://doi.org/10.1371/journal.pone.0014376
  6. Jilani N, Das BC, Husain SA, Baweja UK, Chattopadhya D, Gupta RK, et al. 2007. Hepatitis E virus infection and fulminant hepatic failure during pregnancy. J. Gastroenterol. Hepatol. 22: 676-682. https://doi.org/10.1111/j.1440-1746.2007.04913.x
  7. Navaneethan U, Al Mohajer M, Shata MT. 2008. Hepatitis E and pregnancy: understanding the pathogenesis. Liver Int. 28: 1190-1199. https://doi.org/10.1111/j.1478-3231.2008.01840.x
  8. Ifeorah IM, Faleye TOC, Bakarey AS, Adewumi MO, Akere A, Omoruyi EC, et al. 2017. Acute hepatitis E virus infection in two geographical regions of nigeria. J. Pathog. 2017: 4067108.
  9. Bazerbachi F, Haffar S, Garg SK, Lake JR. 2016. Extrahepatic manifestations associated with hepatitis E virus infection: a comprehensive review of the literature. Gastroenterol. Rep. (Oxf) 4: 1-15. https://doi.org/10.1093/gastro/gov042
  10. Guthmann JP, Klovstad H, Boccia D, Hamid N, Pinoges L, Nizou JY, et al. 2006. A large outbreak of hepatitis E among a displaced population in Darfur, Sudan, 2004: the role of water treatment methods. Clin. Infect. Dis. 42: 1685-1691. https://doi.org/10.1086/504321
  11. Howard C M, Handzel T, Hill VR, Grytdal SP, Blanton C , Kamili S, et al. 2010. Novel risk factors associated with hepatitis E virus infection in a large outbreak in northern Uganda: results from a case-control study and environmental analysis. Am. J. Trop. Med. Hyg. 83: 1170-1173. https://doi.org/10.4269/ajtmh.2010.10-0384
  12. Lhomme S, Abravanel F, Dubois M, Sandres-Saune K, Rostaing L, Kamar N, et al. 2012. Hepatitis E virus quasispecies and the outcome of acute hepatitis E in solid-organ transplant patients. J. Virol. 86: 10006-10014. https://doi.org/10.1128/JVI.01003-12
  13. Lhomme S, Marion O, Abravanel F, Chapuy-Regaud S, Kamar N, Izopet J. 2016. Hepatitis E pathogenesis. Viruses 8.
  14. Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124: 783-801. https://doi.org/10.1016/j.cell.2006.02.015
  15. Kang S, Myoung J. 2017. Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J. Microbiol. 55: 319-329. https://doi.org/10.1007/s12275-017-7075-2
  16. Medzhitov R. 2007. Recognition of microorganisms and activation of the immune response. Nature 449: 819-826. https://doi.org/10.1038/nature06246
  17. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, et al. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82: 335-345. https://doi.org/10.1128/JVI.01080-07
  18. Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell 140: 805-820. https://doi.org/10.1016/j.cell.2010.01.022
  19. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101-105. https://doi.org/10.1038/nature04734
  20. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, et al. 2006. 5'-Triphosphate RNA is the ligand for RIG-I. Science 314: 994-997. https://doi.org/10.1126/science.1132505
  21. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, et al. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314: 997-1001. https://doi.org/10.1126/science.1132998
  22. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5: 730-737. https://doi.org/10.1038/ni1087
  23. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, et al. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6: 981-988. https://doi.org/10.1038/ni1243
  24. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, et al. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167-1172. https://doi.org/10.1038/nature04193
  25. Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669-682. https://doi.org/10.1016/j.cell.2005.08.012
  26. Kang S, C hoi C , C hoi I, Han KN, Rho SW, C hoi J, et al. 2018. Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562. https://doi.org/10.4014/jmb.1808.08058
  27. Marques JT, Devosse T, Wang D, Zamanian-Daryoush M, Serbinowski P, Hartmann R, et al. 2006. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat. Biotechnol. 24: 559-565. https://doi.org/10.1038/nbt1205
  28. Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M, Jr. 2008. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454: 523-527. https://doi.org/10.1038/nature07106
  29. Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M, et al. 2010. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat. Immunol. 11: 63-69. https://doi.org/10.1038/ni.1824
  30. Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, et al. 2009. Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31: 25-34. https://doi.org/10.1016/j.immuni.2009.05.008
  31. Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, et al. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205: 1601-1610. https://doi.org/10.1084/jem.20080091
  32. Johne R, Trojnar E, Filter M, Hofmann J. 2016. Thermal stability of hepatitis E virus as estimated by a cell culture method. Appl. Environ. Microbiol. 82: 4225-4231. https://doi.org/10.1128/AEM.00951-16
  33. Schemmerer M, Apelt S, Trojnar E, Ulrich RG, Wenzel JJ, Johne R. 2016. Enhanced replication of hepatitis E virus strain 47832c in an A549-derived subclonal cell line. Viruses 8.
  34. Kou Y, Wan M, Shi W, Liu J, Zhao Z, Xu Y, et al. 2018. Performance of homologous and heterologous prime-boost immunization regimens of recombinant adenovirus and modified vaccinia virus ankara expressing an Ag85B-TB10.4 fusion protein against mycobacterium tuberculosis. J. Microbiol. Biotechnol. 28: 1022-1029. https://doi.org/10.4014/jmb.1712.12064
  35. Phuong NH, Kwak C , Heo C K, C ho EW, Yang J, Poo H. 2018. Development and characterization of monoclonal antibodies against nucleoprotein for diagnosis of influenza A virus. J. Microbiol. Biotechnol. 28: 809-815. https://doi.org/10.4014/jmb.1801.01002
  36. Kim E, Myoung J. 2018. Hepatitis E virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5. J. Microbiol. Biotechnol. 28: 1908-1915. https://doi.org/10.4014/jmb.1809.09028
  37. Park MK, Cho H, Roh SW, Kim SJ, Myoung J. 2019. Cell type-specific interferon-gamma-mediated antagonism of KSHV lytic replication. Sci. Rep. 9: 2372. https://doi.org/10.1038/s41598-019-38870-7
  38. Baek YH, Cheon HS, Park SJ, Lloren KKS, Ahn SJ, Jeong JH, et al. 2018. Simple, rapid and sensitive portable molecular diagnosis of SFTS virus using reverse transcriptional loop-mediated isothermal amplification (RT-LAMP). J. Microbiol. Biotechnol. 28: 1928-1936. https://doi.org/10.4014/jmb.1806.06016
  39. Dai W, Wu Y, Bi J, Wang J, Wang S, Kong W, et al. 2018. Antiviral effect of retro-2.1 against herpes simplex virus type 2 in vitro. J. Microbiol. Biotechnol. 28: 849-859. https://doi.org/10.4014/jmb.1712.12052
  40. Karpe YA, Lole KS. 2011. Deubiquitination activity associated with hepatitis E virus putative papain-like cysteine protease. J. Gen. Virol. 92: 2088-2092. https://doi.org/10.1099/vir.0.033738-0
  41. Oshiumi H, Miyashita M, Matsumoto M, Seya T. 2013. A distinct role of riplet-mediated K63-linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS Pathog. 9: e1003533. https://doi.org/10.1371/journal.ppat.1003533
  42. Nan Y, Yu Y, Ma Z, Khattar SK, Fredericksen B, Zhang YJ. 2014. Hepatitis E virus inhibits type I interferon induction by ORF1 products. J. Virol. 88: 11924-11932. https://doi.org/10.1128/JVI.01935-14

Cited by

  1. Zika Virus Proteins NS2A and NS4A Are Major Antagonists that Reduce IFN-β Promoter Activity Induced by the MDA5/RIG-I Signaling Pathway vol.29, pp.10, 2019, https://doi.org/10.4014/jmb.1909.09017
  2. Chikungunya Virus-Encoded nsP2, E2 and E1 Strongly Antagonize the Interferon-β Signaling Pathway vol.29, pp.11, 2019, https://doi.org/10.4014/jmb.1910.10014
  3. Identification of Hepatitis E Virus in Bovine and Porcine Raw Livers vol.29, pp.12, 2019, https://doi.org/10.4014/jmb.1910.10059
  4. Middle East Respiratory Syndrome Coronavirus-Encoded ORF8b Inhibits RIG-I-Like Receptors by a Differential Mechanism vol.29, pp.12, 2019, https://doi.org/10.4014/jmb.1911.11024
  5. Chikungunya Virus nsP2 Impairs MDA5/RIG-I-Mediated Induction of NF-κB Promoter Activation: A Potential Target for Virus-Specific Therapeutics vol.30, pp.12, 2020, https://doi.org/10.4014/jmb.2012.12005
  6. Interplay between Hepatitis E Virus and Host Cell Pattern Recognition Receptors vol.22, pp.17, 2019, https://doi.org/10.3390/ijms22179259